A302691 Number of broken alternating permutations of n things.
0, 0, 1, 2, 7, 26, 117, 594, 3407, 21682, 151853, 1160026, 9600567, 85566378, 817099909, 8322907298, 90074979487, 1032183177314, 12485056392285, 158964674218410, 2125201153260167, 29764791617545690, 435823661971532981, 6658895050949717362, 105979606291488794607
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..484
- D. Chebikin, Variations on descents and inversions in permutations, The Electronic J. of Combinatorics, 15 (2008), #R132.
- Boulos El Hilany, Johannes Rau, Signed counts of real simple rational functions, arXiv:1712.05639 [math.AG], 2017, Proposition 6.4, p. 19.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, t, add(b(o+j-1, u-j, t), j=1..u)+ `if`(t=0, add(b(o-j, u-1+j, 1), j=1..o), 0)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..25); # Alois P. Heinz, Apr 14 2018 # second Maple program: egf:= (cos(x)-sin(x)+x-1)/(sin(x)-1): a:= n-> n! * coeff(series(egf, x, n+1), x, n): seq(a(n), n=0..25); # Alois P. Heinz, Apr 16 2018
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, t, Sum[b[o + j - 1, u - j, t], {j, 1, u}] + If[t == 0, Sum[b[o - j, u - 1 + j, 1], {j, 1, o}], 0]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2018, after Alois P. Heinz *)
Formula
a(n) ~ (4 - Pi) * 2^(n + 5/2) * n^(n + 3/2) / (exp(n) * Pi^(n + 3/2)). - Vaclav Kotesovec, Apr 14 2018
E.g.f.: (cos(x)-sin(x)+x-1)/(sin(x)-1). - Alois P. Heinz, Apr 16 2018
Extensions
a(13)-a(24) from Alois P. Heinz, Apr 14 2018
Comments