cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302691 Number of broken alternating permutations of n things.

Original entry on oeis.org

0, 0, 1, 2, 7, 26, 117, 594, 3407, 21682, 151853, 1160026, 9600567, 85566378, 817099909, 8322907298, 90074979487, 1032183177314, 12485056392285, 158964674218410, 2125201153260167, 29764791617545690, 435823661971532981, 6658895050949717362, 105979606291488794607
Offset: 0

Views

Author

Michael De Vlieger, Apr 11 2018

Keywords

Comments

A permutation of {1,2,...,n} is said to be a "broken alternating permutation" if it is an alternating permutation (cf. A000111) except at one point. See El Hilany and Rau for precise definition and an explicit formula.

Crossrefs

Cf. A000111.
Column k=2 of A145876.

Programs

  • Maple
    b:= proc(u, o, t) option remember;
          `if`(u+o=0, t, add(b(o+j-1, u-j, t), j=1..u)+
          `if`(t=0,      add(b(o-j, u-1+j, 1), j=1..o), 0))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 14 2018
    # second Maple program:
    egf:= (cos(x)-sin(x)+x-1)/(sin(x)-1):
    a:= n-> n! * coeff(series(egf, x, n+1), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 16 2018
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, t, Sum[b[o + j - 1, u - j, t], {j, 1, u}] + If[t == 0, Sum[b[o - j, u - 1 + j, 1], {j, 1, o}], 0]];
    a[n_] := b[n, 0, 0];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2018, after Alois P. Heinz *)

Formula

a(n) ~ (4 - Pi) * 2^(n + 5/2) * n^(n + 3/2) / (exp(n) * Pi^(n + 3/2)). - Vaclav Kotesovec, Apr 14 2018
E.g.f.: (cos(x)-sin(x)+x-1)/(sin(x)-1). - Alois P. Heinz, Apr 16 2018

Extensions

a(13)-a(24) from Alois P. Heinz, Apr 14 2018