cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302695 Number of 6-cycles in the (n+5)-path complement graph.

Original entry on oeis.org

0, 5, 50, 265, 996, 2985, 7610, 17185, 35320, 67341, 120770, 205865, 336220, 529425, 807786, 1199105, 1737520, 2464405, 3429330, 4691081, 6318740, 8392825, 11006490, 14266785, 18295976, 23232925, 29234530, 36477225, 45158540, 55498721, 67742410, 82160385, 99051360
Offset: 0

Views

Author

Eric W. Weisstein, Apr 11 2018

Keywords

Crossrefs

Cf. A000292 (3-cycles of \bar P_{n+4}), A002817 (4-cycles of \bar P_{n+4}), A060446 (5-cycles of \bar P_{n+3}).

Programs

  • Mathematica
    Table[n (4 + 22 n + 17 n^2 + 13 n^3 + 3 n^4 + n^5)/12, {n, 0, 20}]
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {5, 50, 265, 996, 2985, 7610, 17185}, {0, 20}]
    CoefficientList[Series[x (-5 - 15 x - 20 x^2 - 16 x^3 - 3 x^4 - x^5)/(-1 + x)^7, {x, 0, 20}], x]
  • PARI
    a(n) = n*(4+22*n+17*n^2+13*n^3+3*n^4+n^5)/12; \\ Altug Alkan, Apr 12 2018

Formula

G.f.: x*(-5 - 15*x - 20*x^2 - 16*x^3 - 3*x^4 - x^5)/(-1 + x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
a(n) = n*(4 + 22*n + 17*n^2 + 13*n^3 + 3*n^4 + n^5)/12.