cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A317904 Decimal expansion of a constant related to the asymptotics of A302598.

Original entry on oeis.org

3, 9, 5, 6, 1, 8, 4, 2, 0, 3, 0, 2, 6, 1, 6, 9, 7, 5, 4, 5, 4, 0, 8, 0, 2, 1, 8, 1, 8, 7, 8, 3, 0, 0, 8, 3, 3, 2, 9, 9, 9, 9, 8, 8, 0, 9, 5, 2, 5, 5, 5, 4, 0, 9, 8, 1, 6, 4, 9, 6, 2, 1, 1, 3, 0, 9, 3, 2, 8, 8, 5, 1, 3, 1, 4, 6, 2, 5, 2, 1, 2, 3, 0, 3, 1, 1, 5, 8, 9, 4, 8, 8, 4, 1, 6, 4, 0, 9, 6, 0, 7, 4, 7, 6, 5
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 10 2018

Keywords

Examples

			3.9561842030261697545408021818783008332999988095...
		

Crossrefs

A302598 G.f.: Sum_{n>=0} (1 + (1+x)^n)^n / (2 + (1+x)^n)^(n+1).

Original entry on oeis.org

1, 1, 6, 58, 798, 14150, 307076, 7881756, 233536532, 7844786248, 294582696686, 12228351266210, 556017625969246, 27482790417322218, 1467194712330407238, 84134395928742550138, 5157545958316518485420, 336574587493456290969620, 23296320082405927961459550, 1704662916739625989249415610, 131480805016085834305348796128
Offset: 0

Views

Author

Paul D. Hanna, Apr 10 2018

Keywords

Comments

The following identity holds for |y| <= 1 and fixed real k > 0:
Sum_{n>=0} (k + y^n)^n/(1+k + y^n)^(n+1) = Sum_{n>=0} (y^n - 1)^n/(1+k - k*y^n)^(n+1).

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 58*x^3 + 798*x^4 + 14150*x^5 + 307076*x^6 + 7881756*x^7 + 233536532*x^8 + 7844786248*x^9 + 294582696686*x^10 + ...
such that
A(x) = 1/3  +  (1 + (1+x))/(2 + (1+x))^2  +  (1 + (1+x)^2)^2/(2 + (1+x)^2)^3  +  (1 + (1+x)^3)^3/(2 + (1+x)^3)^4  +  (1 + (1+x)^4)^4/(2 + (1+x)^4)^5  +  (1 + (1+x)^5)^5/(2 + (1+x)^5)^6  +  (1 + (1+x)^6)^6/(2 + (1+x)^6)^7  + ...
Also,
A(x) = 1  +  ((1+x) - 1)/(2 - (1+x))^2  +  ((1+x)^2 - 1)^2/(2 - (1+x)^2)^3  +  ((1+x)^3 - 1)^3/(2 - (1+x)^3)^4  +  ((1+x)^4 - 1)^4/(2 - (1+x)^4)^5  +  ((1+x)^5 - 1)^5/(2 - (1+x)^5)^6  +  ((1+x)^6 - 1)^6/(2 - (1+x)^6)^7 + ...
RELATED INFINITE SERIES.
(1) At x = -1/2: the following sums are equal
S1 = Sum_{n>=0} 2^n * (2^n + 1)^n/(2^(n+1) + 1)^(n+1)
S1 = Sum_{n>=0} (-2)^n * (2^n - 1)^n/(2^(n+1) - 1)^(n+1).
Explicitly,
S1 = 1/3 + 2*3/5^2 + 4*5^2/9^3 + 8*9^3/17^4 + 16*17^4/33^5 + 32*33^5/65^6 + 64*65^6/129^7 + 128*129^7/257^8 + 256*257^8/513^9 + 512*513^9/1025^10 + ...
S1 = 1 - 2*1/3^2 + 4*3^2/7^3 - 8*7^3/15^4 + 16*15^4/31^5 - 32*31^5/63^6 + 64*63^6/127^7 - 128*127^7/255^8 + 256*255^8/511^9 - 512*511^9/1023^10 + ...
where S1 = 0.84714730053329880291591114748812485885366310294051236295420...
(2) At x = -2/3: the following sums are equal
S2 = Sum_{n>=0} 3^n * (1 + 3^n)^n / (2*3^n + 1)^(n+1)
S2 = Sum_{n>=0} (-3)^n * (3^n - 1)^n / (2*3^n - 1)^(n+1).
Explicitly,
S2 = 1/3 + 3*4/7^2 + 9*10^2/19^3 + 27*28^3/55^4 + 81*82^4/163^5 + 243*244^5/487^6 + 729*730^6/1459^7 + 2187*2188^7/4375^8 + 6561*6562^8/13123^9 + 19683*19684^9/39367^10 + ...
S2 = 1 - 3*2^1/5^2 + 9*8^2/17^3 - 27*26^3/53^4 + 81*80^4/161^5 - 243*242^5/485^6 + 729*728^6/1457^7 - 2187*2186^7/4373^8 + 6561*6560^8/13121^9 - 19683*19682^9/39365^10 + ...
where S2 = 0.837457334418049175936255584889342515316005199043439291643371...
(3) At x = -1/3: the following sums are equal
S3 = Sum_{n>=0} 3^n * (2^n + 3^n)^n/(2*3^n + 2^n)^(n+1)
S3 = Sum_{n>=0} (-3)^n * (3^n - 2^n)^n/(2*3^n - 2^n)^(n+1).
Explicitly,
S3 = 1/3 + 3*5/8^2 + 9*13^2/22^3 + 27*35^3/62^4 + 81*97^4/178^5 + 243*275^5/518^6 + 729*793^6/1522^7 + 2187*2315^7/4502^8 + 6561*6817^8/13378^9 + 19683*20195^9/39878^10 + ...
S3 = 1 - 3*1/4^2 + 9*5^2/14^3 - 27*19^3/46^4 + 81*65^4/146^5 - 243*211^5/454^6 + 729*665^6/1394^7 - 2187*2059^7/4246^8 + 6561*6305^8/12866^9 - 19683*19171^9/38854^10 + ...
where S3 = 0.867357695200699139470956415922046910279987551651352471994920...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1,o=x*O(x^n)); A = sum(m=0,n,((1+x +o)^m - 1)^m / (2 - (1+x +o)^m)^(m+1)); polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} ((1+x)^n - 1)^n / (2 - (1+x)^n)^(n+1).
G.f.: Sum_{n>=0} ((1+x)^n + 1)^n / (2 + (1+x)^n)^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = A317904 = 3.9561842030261697545408021818783008332999988095... and c = 0.274656497660429769528095546948772676444158... - Vaclav Kotesovec, Aug 09 2018
Showing 1-2 of 2 results.