cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302701 O.g.f. A(x) satisfies: A(x) = 1 + Integral (x/A(x))' / (x/A(x)^4)' dx.

Original entry on oeis.org

1, 1, 3, 16, 118, 1050, 10509, 113892, 1307043, 15661024, 194075098, 2470848492, 32161635070, 426440290744, 5743575712131, 78405535427220, 1082876597440146, 15109514661352482, 212736976140479073, 3019422091269739704, 43164665664066028062, 621078277521084894978, 8989001884449529431990, 130795752983608734209604, 1912460927749734257739153, 28088780052768915388505436, 414247711043291214286003410
Offset: 0

Views

Author

Paul D. Hanna, Apr 19 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 118*x^4 + 1050*x^5 + 10509*x^6 + 113892*x^7 + 1307043*x^8 + 15661024*x^9 + 194075098*x^10 + ...
RELATED SERIES.
(x/A(x))' / (x/A(x)^4)' = 1 + 6*x + 48*x^2 + 472*x^3 + 5250*x^4 + 63054*x^5 + 797244*x^6 + 10456344*x^7 + 140949216*x^8 + 1940750980*x^9 + ...
which equals A'(x).
The logarithmic derivative of the g.f. begins:
A'(x)/A(x) = 1 + 5*x + 40*x^2 + 401*x^3 + 4531*x^4 + 55040*x^5 + 701716*x^6 + 9261257*x^7 + 125449600*x^8 + 1734071855*x^9 + 24362189248*x^10 + ...
which equals (1 + x*A(x)^2 - sqrt(1 - 14*x*A(x)^2 + x^2*A(x)^4))/(8*x).
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A = 1; Do[A = 1 + Integrate[D[x/A, x]/D[x/A^4, x], x] + O[x]^nmax, nmax]; CoefficientList[A, x] (* Vaclav Kotesovec, Oct 15 2020 *)
  • PARI
    {a(n) = my(A=1); for(i=1, n, A = 1 + intformal( (x/A)'/(x/A^4 +x*O(x^n))' ); ); polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))

Formula

O.g.f. A(x) satisfies:
(1) A(x) = 1 + Integral (x/A(x))' / (x/A(x)^4)' dx.
(2) A(x) = 1 + Integral A(x)^3 * (A(x) - x*A'(x)) / (A(x) - 4*x*A'(x)) dx.
(3) A(x) = 1 + Integral A(x) * (1 + x*A(x)^2 - sqrt(1 - 14*x*A(x)^2 + x^2*A(x)^4) )/(8*x) dx.
(4) 0 = A(x)^4 - A(x)*(1 + x*A(x)^2)*A'(x) + 4*x*A'(x)^2.
a(n) ~ 3^(2/3) * (1240209 - 716035*sqrt(3))^(1/6) * 2^((4*n - 5)/3) * (3 + 2*sqrt(3))^n / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Oct 14 2020