A302707 Number of factors of Chebyshev polynomial S(2*n+1, x) (A049310) over the integers. Factorization is into the minimal integer polynomials C (A187360).
1, 2, 4, 3, 4, 6, 4, 4, 7, 6, 4, 8, 4, 6, 10, 5, 4, 10, 4, 8, 10, 6, 4, 10, 7, 6, 10, 8, 4, 14, 4, 6, 10, 6, 10, 13, 4, 6, 10, 10, 4, 14, 4, 8, 16, 6, 4, 12, 7, 10, 10, 8, 4, 14, 10, 10, 10, 6, 4, 18, 4, 6, 16, 7, 10, 14, 4, 8, 10, 14, 4, 16, 4, 6, 16, 8, 10, 14, 4, 12, 13
Offset: 0
Examples
a(2) = 4 because S(5, x) = 3*x-4*x^3+x^5 = x*(-1 + x)*(1 + x)*(-3 + x^2) = C(2, x)*C(3, x)*(-C(3, -x))*C(6, x). a(5) = 6 because S(11, x) = -6*x + 35*x^3 - 56*x^5 + 36*x^7 - 10*x^9 + x^11 = x*(-1 + x)*(1 + x)*(-2 + x^2)*(-3 + x^2)*(1 - 4*x^2 + x^4) = C(2, x)*C(3, x)*(-C(3, -x))*C(4, x)*C(6, x)*C(12, x).
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
Programs
-
Mathematica
a[n_] := DivisorSigma[0, 2*(n+1)] + DivisorSigma[0, (n+1)/2^IntegerExponent[n+1, 2]] - 2; Array[a, 100, 0] (* Amiram Eldar, Feb 03 2025 *)
-
PARI
A001227(n) = numdiv(n>>valuation(n,2)); A302707(n) = (A001227(1+n) + numdiv(2*(n+1)) - 2); \\ Antti Karttunen, Sep 30 2018
Formula
G.f.: Sum_{k>=1} (x^(k-1)/(1-x^(2*k)) + x^(k-1)*(2+x^k)/(1-x^(2*k))) - 2/(1-x).
Sum_{k=1..n} a(k) ~ 2*n * (log(n) + 2*gamma + log(2)/2 - 2), where gamma is Euler's constant (A001620). - Amiram Eldar, Feb 03 2025
Extensions
Typo in the first formula corrected by Antti Karttunen, Sep 30 2018
Comments