cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302709 a(n) = Trinomial(2*n+1, 4) = (1/6)*n*(2*n + 1)*(2*n^2 + 9*n + 1), n >= 0.

Original entry on oeis.org

0, 6, 45, 161, 414, 880, 1651, 2835, 4556, 6954, 10185, 14421, 19850, 26676, 35119, 45415, 57816, 72590, 90021, 110409, 134070, 161336, 192555, 228091, 268324, 313650, 364481, 421245, 484386, 554364, 631655, 716751, 810160, 912406, 1024029, 1145585, 1277646, 1420800, 1575651, 1742819, 1922940
Offset: 0

Views

Author

Wolfdieter Lang, Apr 19 2018

Keywords

Comments

The irregular triangle of trinomial coefficients is given in A027907. There the Comtet reference is given.

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)

Crossrefs

Cf. A027907, A000384 (k=2), A030440 (k=3), A127672.

Programs

  • Magma
    [(1/6)*n*(2*n+1)*(2*n^2+9*n+1): n in [0..50]]; // Vincenzo Librandi, Apr 20 2018
    
  • Mathematica
    CoefficientList[Series[x (6 + 15 x - 4 x^2 - x^3) / (1 - x)^5, {x, 0, 40}], x] (* or *) LinearRecurrence[{5, -10, 10, -5, 1},{0, 6, 45, 161, 414}, 45] (* Vincenzo Librandi, Apr 20 2018 *)
  • PARI
    a(n) = n*(2*n+1)*(2*n^2+9*n+1)/6; \\ Altug Alkan, Apr 20 2018

Formula

a(n) = A027907(2*n+1, 4), n >= 0. a(n) = A027907(2*n+1, 2*(2*n-1)), for n >= 1 (symmetry).
a(n) = binomial(2*n+1, 2) + (2*n+1)*binomial(2*n, 2) + binomial(2*n+1, 4) (from the trinomial definition) = (1/6)*n*(2*n + 1)*(2*n^2 + 9*n + 1).
G.f.: x*(6 + 15*x - 4*x^2 - x^3)/(1 - x)^5.
a(n) = (1/Pi)*Integral_{x=0..2} (1/sqrt(4 - x^2))*(x^2 - 1)^(2*n+1)*R(2*(2*n-3), x), n >= 0, with the R polynomial coefficients given in A127672. Note that R(-n, x) = R(n, x). [Comtet, p. 77, the integral formula for q=3, n -> 2*n+1, k = 4, rewritten with x = 2*cos(phi)].