A302711 Decimal expansion of 2*sin(15*Pi/32).
1, 9, 9, 0, 3, 6, 9, 4, 5, 3, 3, 4, 4, 3, 9, 3, 7, 7, 2, 4, 8, 9, 6, 7, 3, 9, 0, 6, 2, 1, 8, 9, 5, 9, 8, 4, 3, 1, 5, 0, 9, 4, 9, 7, 3, 7, 4, 5, 9, 7, 1, 4, 1, 2, 3, 6, 6, 7, 2, 2, 5, 9, 3, 1, 5, 6, 9, 7, 8, 0, 3, 3, 3, 7, 8, 9, 1, 7, 3, 0, 7, 5, 9, 4, 5, 0, 5, 8, 1, 6, 8, 5, 3, 9, 2, 9, 6, 7, 8, 0
Offset: 1
Examples
2*sin(15*Pi/32) = 1.990369453344393772489673906218959843150949737459714123...
References
- Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.
- Eli Maor, Trigonometric Delights, Princeton University Press, NJ, 1998, pp. 56-62.
Links
- Adriano Romano Lovaniensi, Ideae Mathematicae, 1593.
- Adriano Romano Lovaniensi,Ideae Mathematicae, 1593 [alternative link].
- Franciscus Vieta, Ad Problema. Quod omnibus Mathematicis totius orbis construendum proposuit Adrianus Romanus, Paris, 1595
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for algebraic numbers, degree 16
Crossrefs
Programs
-
Mathematica
RealDigits[2*Sin[15 Pi/32],10,120][[1]] (* Harvey P. Dale, Oct 22 2019 *)
-
PARI
2*sin(15*Pi/32) \\ Charles R Greathouse IV, Jan 29 2022
Formula
This constant is 2*sin(15*Pi/32) = sqrt(2 + sqrt(2 + sqrt(2 + sqrt(2)))). (for a proof see Havil. p.71).
Comments