cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302787 a(1) = 0; for n > 1, a(n) = A000265(A052331(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 5, 1, 9, 1, 3, 1, 17, 5, 1, 1, 33, 1, 3, 9, 65, 1, 7, 1, 129, 17, 5, 1, 11, 1, 257, 33, 513, 3, 9, 1, 1025, 65, 13, 1, 19, 1, 17, 5, 2049, 1, 129, 1, 4097, 257, 33, 1, 35, 9, 21, 513, 8193, 1, 7, 1, 16385, 3, 65, 17, 67, 1, 129, 1025, 25, 1, 37, 1, 32769, 2049, 257, 5, 131, 1, 33, 1, 65537, 1, 11, 65, 131073, 4097, 69, 1, 41, 9
Offset: 1

Views

Author

Antti Karttunen, Apr 13 2018

Keywords

Comments

After n=1, differs from A240535 (which gives the same terms, but with mirrored binary expansion) for the first time at n=30, where a(30) = 11, while A240535(30) = 13. Note how 11 = "1011" and 13 = "1101" in binary.
For all i, j: a(i) = a(j) => A302791(i) = A302791(j).

Crossrefs

Programs

  • PARI
    up_to = 8192;
    v050376 = vector(up_to);
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A000265(n) = (n/2^valuation(n, 2));
    A302787(n) = if(1==n,0,A000265(A052331(n)));

Formula

a(1) = 0; for n > 1, a(n) = A000265(A052331(n)).
For n > 1, a(n) = A030101(A240535(n)).
For n >= 1, A069010(a(n)) = A302790(n).