cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302790 Number of runs of consecutive Fermi-Dirac factors of n (the runs are separated by gaps between indices of factors): a(n) = A069010(A052331(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 13 2018

Keywords

Examples

			n = 84 has Fermi-Dirac factorization as A050376(2) * A050376(3) * A050376(5) = 3*4*7. Because there is a gap between A050376(3) and A050376(5), the factors occur in two separate runs (3*4 and 7), thus a(84) = 2.
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    v050376 = vector(up_to);
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A069010(n) = ((1 + (hammingweight(bitxor(n, n>>1)))) >> 1); \\ From A069010
    A302790(n) = A069010(A052331(n));

Formula

a(n) = A069010(A052331(n)).
a(n) = A069010(A302787(n)).
a(n) = A001221(A302024(n)).
For all n >= 1, a(n) <= A064547(n).