cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A302803 Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 29, 169, 1010, 6084, 36456, 218640, 1312416, 7873344, 47237760, 283440384, 1700614656, 10203632640, 61222127616, 367332102144, 2203991285760, 13223955677184, 79343718137856, 476062276976640, 2856373852962816
Offset: 1

Views

Author

R. H. Hardin, Apr 13 2018

Keywords

Comments

Column 3 of A302808.

Examples

			Some solutions for n=5
..0..0..0. .0..0..0. .0..0..0. .0..1..0. .0..0..0. .0..0..1. .0..1..1
..1..1..0. .1..1..0. .1..0..0. .0..0..1. .1..1..0. .1..1..1. .1..0..1
..1..0..1. .0..0..0. .1..1..1. .1..0..1. .0..0..0. .1..0..1. .0..1..1
..0..0..1. .0..0..0. .1..1..1. .1..0..1. .1..0..1. .0..0..1. .0..1..0
..0..1..1. .0..0..1. .0..0..1. .1..0..0. .0..1..1. .1..1..1. .0..0..1
		

Crossrefs

Cf. A302808.

Formula

Empirical: a(n) = 6*a(n-1) +24*a(n-3) -144*a(n-4) for n>6

A302804 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 105, 934, 8718, 82367, 773520, 7267160, 68346451, 642498696, 6040048126, 56785892353, 533860095036, 5018978504768, 47185161079295, 443603218392484, 4170460416343998, 39207890434190925, 368606418000678668
Offset: 1

Views

Author

R. H. Hardin, Apr 13 2018

Keywords

Comments

Column 4 of A302808.

Examples

			Some solutions for n=5
..0..1..1..0. .0..1..1..1. .0..1..0..0. .0..0..1..1. .0..1..1..0
..1..0..1..1. .0..0..1..0. .0..1..1..0. .1..0..1..1. .0..1..0..1
..1..0..1..1. .1..0..0..0. .0..0..1..1. .1..0..0..1. .1..0..1..0
..0..1..1..0. .1..0..0..1. .1..1..0..0. .0..1..1..0. .1..0..0..1
..0..0..0..1. .1..0..0..0. .0..1..1..1. .1..1..0..0. .1..1..0..1
		

Crossrefs

Cf. A302808.

Formula

Empirical: a(n) = 10*a(n-1) +a(n-2) +25*a(n-3) -853*a(n-4) -99*a(n-5) +2046*a(n-6) +16917*a(n-7) -2302*a(n-8) -31502*a(n-9) -89718*a(n-10) +14428*a(n-11) +54836*a(n-12) -37484*a(n-13) +150384*a(n-14) -43524*a(n-15) +14472*a(n-16) -33696*a(n-17) +5832*a(n-18) for n>20

A302805 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 384, 5117, 74072, 1089773, 15904814, 232260380, 3396923500, 49653502029, 725819333902, 10610883930284, 155117154439613, 2267613174993517, 33149833862902867, 484610500065661957, 7084420896663049377
Offset: 1

Views

Author

R. H. Hardin, Apr 13 2018

Keywords

Comments

Column 5 of A302808.

Examples

			Some solutions for n=5
..0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..1. .0..0..0..0..1
..0..1..1..0..0. .1..1..1..1..1. .0..1..1..0..0. .0..1..1..1..0
..0..0..1..0..0. .1..0..0..0..1. .1..1..0..0..1. .1..0..0..1..0
..0..1..1..0..0. .0..0..0..1..0. .0..1..0..1..1. .1..0..1..1..0
..0..0..1..0..1. .1..1..1..1..0. .1..0..0..0..0. .1..0..1..1..1
		

Crossrefs

Cf. A302808.

Formula

Empirical recurrence of order 90 (see link above)

A302806 Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 1405, 28128, 632004, 14458177, 327603711, 7428713676, 168777255305, 3832039683236, 87009511631968, 1975863003410635, 44867546574739748, 1018847987183719920, 23136108111721947785, 525376281243945915231
Offset: 1

Views

Author

R. H. Hardin, Apr 13 2018

Keywords

Comments

Column 6 of A302808.

Examples

			Some solutions for n=5
..0..1..0..0..1..0. .0..0..1..1..0..0. .0..1..0..0..1..0. .0..0..1..1..0..0
..0..0..1..0..1..1. .0..0..0..1..0..0. .0..0..1..1..0..1. .0..0..0..1..0..1
..0..0..0..0..1..0. .0..0..0..1..0..0. .0..0..0..1..0..1. .0..0..0..1..1..0
..0..0..0..1..1..0. .0..1..1..1..1..1. .0..0..0..1..0..0. .0..0..1..1..1..1
..0..1..1..1..0..1. .0..0..0..0..0..0. .0..0..1..1..1..1. .0..1..0..0..0..0
		

Crossrefs

Cf. A302808.

A302807 Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 5135, 154494, 5396562, 192211013, 6769884156, 238687785290, 8434497360938, 297820640670676, 10516667144805042, 371418358544006233, 13116960409103691843, 463238817838530130977, 16359920350061929110887
Offset: 1

Views

Author

R. H. Hardin, Apr 13 2018

Keywords

Comments

Column 7 of A302808.

Examples

			Some solutions for n=5
..0..1..0..1..1..1..1. .0..0..0..1..1..0..0. .0..1..0..0..1..1..0
..0..0..1..0..0..1..0. .0..0..1..1..0..1..0. .0..0..1..1..0..0..0
..0..0..0..1..1..1..0. .0..0..0..1..0..0..1. .0..0..0..1..0..0..0
..0..0..0..0..1..0..0. .0..0..0..1..0..0..0. .0..0..0..1..0..1..1
..0..0..1..0..1..1..0. .0..1..1..1..1..1..1. .0..1..1..0..0..1..0
		

Crossrefs

Cf. A302808.

A302809 Number of 3Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 169, 934, 5117, 28128, 154494, 848519, 4660562, 25597855, 140595667, 772217905, 4241385457, 23295695745, 127950975583, 702767266506, 3859930159709, 21200561758854, 116443510741144, 639562826045595
Offset: 1

Views

Author

R. H. Hardin, Apr 13 2018

Keywords

Comments

Row 3 of A302808.

Examples

			Some solutions for n=5
..0..0..1..0..0. .0..1..0..1..0. .0..1..1..0..0. .0..0..0..1..1
..0..1..0..1..0. .1..1..1..0..0. .1..0..1..1..1. .0..0..1..0..0
..1..0..0..1..0. .0..0..1..0..1. .0..1..0..0..0. .1..1..1..1..1
		

Crossrefs

Cf. A302808.

Formula

Empirical: a(n) = 3*a(n-1) +14*a(n-2) +2*a(n-3) -22*a(n-4) +3*a(n-5) +37*a(n-6) -19*a(n-7) -4*a(n-8) +24*a(n-9) -4*a(n-10) +11*a(n-11) +8*a(n-12) +2*a(n-13) for n>15

A302810 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1010, 8718, 74072, 632004, 5396562, 46048956, 393010948, 3354229130, 28626729216, 244317217799, 2085144343545, 17795817110568, 151879748363323, 1296229146049548, 11062765094422311, 94416001329770771, 805800467376475810
Offset: 1

Views

Author

R. H. Hardin, Apr 13 2018

Keywords

Comments

Row 4 of A302808.

Examples

			Some solutions for n=5
..0..1..0..0..1. .0..0..0..1..1. .0..0..0..0..1. .0..0..0..1..0
..0..0..1..1..0. .1..1..0..1..1. .1..1..1..1..0. .0..1..1..1..0
..1..1..1..0..0. .1..1..0..0..1. .0..0..1..0..0. .0..1..0..1..1
..1..0..1..0..1. .0..1..0..1..1. .1..1..0..0..1. .0..0..1..1..0
		

Crossrefs

Cf. A302808.

Formula

Empirical: a(n) = 5*a(n-1) +44*a(n-2) -54*a(n-3) -583*a(n-4) -134*a(n-5) +3745*a(n-6) +2342*a(n-7) -19086*a(n-8) +5167*a(n-9) +100950*a(n-10) -95590*a(n-11) -330420*a(n-12) +300448*a(n-13) +120445*a(n-14) -580497*a(n-15) +1847741*a(n-16) +1018090*a(n-17) -2871691*a(n-18) +1232729*a(n-19) +625362*a(n-20) -3517102*a(n-21) -369126*a(n-22) -7215641*a(n-23) -3856188*a(n-24) +18527258*a(n-25) +6990579*a(n-26) -24990486*a(n-27) -20336354*a(n-28) +6888853*a(n-29) +27407575*a(n-30) +46764683*a(n-31) +36690912*a(n-32) -29995623*a(n-33) -69788022*a(n-34) -21863393*a(n-35) +29321349*a(n-36) +23774779*a(n-37) +604618*a(n-38) -5816484*a(n-39) -2546547*a(n-40) -146625*a(n-41) +258463*a(n-42) +164010*a(n-43) +39355*a(n-44) -1983*a(n-45) -922*a(n-46) -480*a(n-47) -54*a(n-48) for n>50

A302811 Number of 5Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 6084, 82367, 1089773, 14458177, 192211013, 2552331329, 33899848278, 450271081482, 5980471515193, 79433046406375, 1055034976137769, 14013032591127253, 186121941517382653, 2472082683795436664
Offset: 1

Views

Author

R. H. Hardin, Apr 13 2018

Keywords

Comments

Row 5 of A302808.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..1..1..0..1. .1..0..1..1..0. .1..1..1..0..0. .1..1..1..1..1
..1..0..1..1..0. .0..0..1..0..1. .0..0..0..0..0. .0..0..0..1..0
..0..1..0..0..0. .0..1..1..0..1. .1..0..1..0..1. .1..1..0..1..0
..0..1..1..1..1. .0..1..0..1..0. .1..1..0..1..1. .1..1..1..0..0
		

Crossrefs

Cf. A302808.

A302812 Number of 6Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 36456, 773520, 15904814, 327603711, 6769884156, 139698154211, 2883341313830, 59516238963785, 1228442020230904, 25355878798281362, 523363128022737558, 10802567596406245283, 222972375306077513591
Offset: 1

Views

Author

R. H. Hardin, Apr 13 2018

Keywords

Comments

Row 6 of A302808.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..1..1..0..1. .0..0..1..1..0. .0..0..1..1..0. .0..1..1..0..1
..1..0..0..0..1. .1..0..1..1..0. .0..1..0..1..0. .0..0..1..0..0
..0..0..1..0..1. .0..0..0..1..0. .1..0..1..1..0. .1..1..0..1..1
..1..0..1..0..1. .1..1..0..1..1. .0..1..1..1..0. .1..0..0..1..0
..1..0..0..1..1. .1..0..1..0..0. .1..0..1..0..0. .1..0..1..0..0
		

Crossrefs

Cf. A302808.

A302813 Number of 7Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 218640, 7267160, 232260380, 7428713676, 238687785290, 7656052278093, 245617324998434, 7880802121694786, 252845509516657378, 8112313563916385380, 260276854454728693116, 8350749999160907426626, 267926476583534501527483
Offset: 1

Views

Author

R. H. Hardin, Apr 13 2018

Keywords

Comments

Row 7 of A302808.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..1..0. .0..0..1..1..0. .0..0..1..1..0. .0..0..1..1..0
..1..0..1..0..0. .1..0..1..0..0. .1..0..1..0..0. .1..0..1..0..0
..1..0..1..0..1. .1..1..1..1..0. .1..1..1..0..1. .0..0..1..1..1
..1..0..1..0..0. .1..0..0..1..1. .1..0..0..1..0. .1..1..0..0..0
..1..1..0..1..1. .0..0..0..1..1. .0..0..1..1..0. .1..0..0..1..1
..0..0..0..1..0. .1..0..1..1..0. .1..1..1..0..0. .1..1..0..0..1
		

Crossrefs

Cf. A302808.
Showing 1-10 of 11 results. Next