A302860 a(n) = [x^n] theta_3(x)^n/(1 - x), where theta_3() is the Jacobi theta function.
1, 3, 9, 27, 89, 333, 1341, 5449, 21697, 84663, 327829, 1275739, 5020457, 19964623, 79883141, 320317827, 1284656385, 5152761033, 20686311261, 83182322509, 335110196569, 1352277390001, 5463873556381, 22097867887045, 89441286136465, 362277846495883, 1468465431530457
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
- Index entries for sequences related to sums of squares
Crossrefs
Programs
-
Mathematica
Table[SeriesCoefficient[EllipticTheta[3, 0, x]^n/(1 - x), {x, 0, n}], {n, 0, 26}] Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, -n, n}]^n, {x, 0, n}], {n, 0, 26}]
Formula
a(n) = A122510(n,n).
a(n) ~ c / (sqrt(n) * r^n), where r = 0.241970723224463308846762732757915397312... (= radius of convergence A166952) and c = 0.716940866073606328... - Vaclav Kotesovec, Apr 14 2018
Comments