A302904 Number of permutations of [2n] having exactly n-1 alternating descents.
1, 1, 7, 182, 8699, 704834, 84889638, 14322115212, 3216832016019, 928559550102410, 334876925319944690, 147563833511292247796, 78009671642511668089822, 48728981875112003682759892, 35506576774281843111748649644, 29848802048200930275501944893080
Offset: 0
Keywords
Examples
a(2) = 7: 1234, 1432, 2431, 3214, 3421, 4213, 4312.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- D. Chebikin, Variations on descents and inversions in permutations, The Electronic J. of Combinatorics, 15 (2008), #R132.
Programs
-
Maple
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1, add(b(o+j-1, u-j)*x, j=1..u)+ add(b(o-j, u-1+j), j=1..o))) end: a:= n-> coeff(b(2*n, 0), x, n): seq(a(n), n=0..20);
-
Mathematica
b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1, Sum[b[o + j - 1, u - j] x, {j, 1, u}] + Sum[b[o - j, u - 1 + j], {j, 1, o}]]]; a[n_] := Coefficient[b[2 n, 0], x, n]; a /@ Range[0, 20] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
Formula
a(n) ~ sqrt(3) * 2^(2*n + 1) * n^(2*n) / (sqrt(5) * exp(2*n)). - Vaclav Kotesovec, Apr 29 2018
Comments