A302905 Number of permutations of [n] having exactly ceiling(n/2)-1 alternating descents.
1, 1, 1, 2, 7, 36, 182, 1196, 8699, 76840, 704834, 7570716, 84889638, 1085246904, 14322115212, 211595659320, 3216832016019, 53984412657360, 928559550102410, 17440458896525180, 334876925319944690, 6960292943873805976, 147563833511292247796, 3362366089440205308072
Offset: 0
Keywords
Examples
a(2) = 1: 12. a(3) = 2: 123, 321. a(4) = 7: 1234, 1432, 2431, 3214, 3421, 4213, 4312.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- D. Chebikin, Variations on descents and inversions in permutations, The Electronic J. of Combinatorics, 15 (2008), #R132.
Programs
-
Maple
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1, add(b(o+j-1, u-j)*x, j=1..u)+ add(b(o-j, u-1+j), j=1..o))) end: a:= n-> coeff(b(n, 0), x, ceil(n/2)): seq(a(n), n=0..25);
-
Mathematica
b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1, Sum[b[o + j - 1, u - j]*x, {j, u}] + Sum[b[o - j, u - 1 + j], {j, o}]]]; a[n_] := Coefficient[b[n, 0], x, Ceiling[n/2]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 31 2021, after Alois P. Heinz *)
Formula
a(n) = A145876(n,ceiling(n/2)) for n > 0.
Comments