A302917 Solution to a(1) = 1 and Sum_y Product_i a(y_i) = 0 for each n > 1, where the sum is over all relatively prime or monic partitions of n.
1, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1, -1, -1, 1, 1, -1, -1, 0, 1, 1, -3, 1, 4, -5, -3, 3, 4, 2, -6, -6, 19, -8, -25, 25, 20, -12, -34, 2, 30, 38, -117, 54, 159, -173, -123, 55, 229, 32, -250, -148, 753, -365, -1022, 840, 1121, -847, -1482, -390, 2099
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
a[n_]:=a[n]=If[n===1,1,0]-Sum[Times@@a/@y,{y,Rest[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]]}]; Array[a,20]
Comments