cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A300486 Number of relatively prime or monic partitions of n.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 15, 18, 28, 35, 56, 64, 101, 120, 168, 210, 297, 348, 490, 583, 776, 946, 1255, 1482, 1952, 2335, 2981, 3581, 4565, 5387, 6842, 8119, 10086, 12013, 14863, 17527, 21637, 25525, 31083, 36695, 44583, 52256, 63261, 74171, 88932, 104303, 124754
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime or monic partition of n is an integer partition of n that is either of length 1 (monic) or whose parts have no common divisor other than 1 (relatively prime).

Examples

			The a(6) = 8 relatively prime or monic partitions are (6), (51), (411), (321), (3111), (2211), (21111), (111111). Missing from this list are (42), (33), (222).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]],{n,20}]
  • PARI
    a(n)={(n > 1) + sumdiv(n, d, moebius(d)*numbpart(n/d))} \\ Andrew Howroyd, Aug 29 2018

Formula

a(n > 1) = 1 + A000837(n) = 1 + Sum_{d|n} mu(d) * A000041(n/d).

A302094 Number of relatively prime or monic twice-partitions of n.

Original entry on oeis.org

1, 3, 6, 10, 27, 35, 113, 170, 396, 641, 1649, 2318, 5905, 9112, 18678, 32529, 69094, 106210, 227480, 363433, 705210, 1196190, 2325023, 3724233, 7192245, 11915884, 21857887, 36597843, 67406158, 109594872, 201747847, 333400746, 591125465, 987069077, 1743223350
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime or monic partition of n is an integer partition of n that is either of length 1 (monic) or whose parts have no common divisor other than 1 (relatively prime). Then a relatively prime or monic twice-partition of n is a choice of a relatively prime or monic partition of each part in a relatively prime or monic partition of n.

Examples

			The a(4) = 10 relatively prime or monic twice-partitions:
(4), (31), (211), (1111),
(3)(1), (21)(1), (111)(1),
(2)(1)(1), (11)(1)(1),
(1)(1)(1)(1).
		

Crossrefs

Programs

  • Mathematica
    ip[n_]:=ip[n]=Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&];
    Table[Sum[Times@@Length/@ip/@ptn,{ptn,ip[n]}],{n,10}]

A302915 Number of relatively prime enriched p-trees of weight n.

Original entry on oeis.org

1, 2, 4, 8, 28, 56, 256, 656, 2480, 6688, 30736, 73984, 366560, 1006720, 3966976, 12738560, 58427648, 148069632, 764473600, 2133585664, 8939502080, 28705390592, 136987259648, 356634376704, 1780025034240, 5455065263104, 23215437079552, 73123382895616
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime enriched p-tree of weight n is either a single node of weight n, or a finite sequence of two or more relatively prime enriched p-trees whose weights are weakly decreasing, relatively prime, and sum to n.

Examples

			The a(4) = 8 relatively prime enriched p-trees are 4, (31), ((21)1), (((11)1)1), ((111)1), (211), ((11)11), (1111). Missing from this list are the enriched p-trees ((11)(11)), ((11)2), (2(11)), (22).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=1+Sum[Times@@a/@y,{y,Rest[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]]}];
    Array[a,20]

A302916 Number of relatively prime p-trees of weight n.

Original entry on oeis.org

1, 1, 2, 4, 11, 22, 74, 174, 530, 1302, 4713, 10639, 40877, 101795, 325609, 925733, 3432819, 8078511, 32542036, 82226383, 279096823, 795532677, 3066505569, 7374764180, 28946183035, 79313174765, 275507514909, 772692247626, 3049937788372, 7071057261148
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime p-tree of weight n is either a single node, or a finite sequence of two or more relatively prime p-trees whose weights are weakly decreasing, relatively prime, and sum to n.

Examples

			The a(4) = 4 relatively prime p-trees are (((oo)o)o), ((ooo)o), ((oo)oo), (oooo). Missing from this list is the p-tree ((oo)(oo)).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=If[n===1,1,Sum[Times@@a/@y,{y,Rest[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]]}]];
    Array[a,20]
Showing 1-4 of 4 results.