A302918 Number of nonequivalent minimal total dominating sets in the n-cycle graph up to rotation.
0, 0, 1, 1, 1, 2, 1, 1, 2, 3, 2, 4, 3, 4, 6, 7, 7, 10, 11, 17, 19, 23, 28, 38, 46, 60, 75, 96, 120, 160, 197, 257, 327, 420, 539, 701, 892, 1155, 1488, 1928, 2479, 3220, 4148, 5381, 6961, 9030, 11687, 15183, 19673, 25563, 33174, 43128, 56010, 72864, 94719
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Cycle Graph.
- Eric Weisstein's World of Mathematics, Minimal Total Dominating Set.
Crossrefs
Cf. A300738.
Programs
-
Mathematica
A300738 = DifferenceRoot[Function[{f, n}, {f[n] + f[n+1] - f[n+3] - f[n+4] - f[n+5] - f[n+6] + f[n+9] == 0, f[1]==0, f[2]==0, f[3]==3, f[4]==4, f[5]==5, f[6]==9, f[7]==7, f[8]==4, f[9]==12}]]; a[n_] := (1/n) Sum[EulerPhi[n/d] A300738[d], {d, Divisors[n]}]; a /@ Range[1, 55] (* Jean-François Alcover, Sep 21 2019 *)
-
PARI
NecklaceT(v)={vector(#v, n, sumdiv(n,d,eulerphi(n/d)*v[d])/n)} NecklaceT(concat([0,0],Vec((3 + 4*x + 5*x^2 + 6*x^3 - 8*x^5 - 9*x^6)/((1 - x^2 - x^3)*(1 + x^2 - x^6)) + O(x^50))))
Formula
a(n) = (1/n) * Sum_{d|n} phi(n/d) * A300738(d).