cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302918 Number of nonequivalent minimal total dominating sets in the n-cycle graph up to rotation.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 1, 2, 3, 2, 4, 3, 4, 6, 7, 7, 10, 11, 17, 19, 23, 28, 38, 46, 60, 75, 96, 120, 160, 197, 257, 327, 420, 539, 701, 892, 1155, 1488, 1928, 2479, 3220, 4148, 5381, 6961, 9030, 11687, 15183, 19673, 25563, 33174, 43128, 56010, 72864, 94719
Offset: 1

Views

Author

Andrew Howroyd, Apr 15 2018

Keywords

Crossrefs

Cf. A300738.

Programs

  • Mathematica
    A300738 = DifferenceRoot[Function[{f, n}, {f[n] + f[n+1] - f[n+3] - f[n+4] - f[n+5] - f[n+6] + f[n+9] == 0, f[1]==0, f[2]==0, f[3]==3, f[4]==4, f[5]==5, f[6]==9, f[7]==7, f[8]==4, f[9]==12}]];
    a[n_] := (1/n) Sum[EulerPhi[n/d] A300738[d], {d, Divisors[n]}];
    a /@ Range[1, 55] (* Jean-François Alcover, Sep 21 2019 *)
  • PARI
    NecklaceT(v)={vector(#v, n, sumdiv(n,d,eulerphi(n/d)*v[d])/n)}
    NecklaceT(concat([0,0],Vec((3 + 4*x + 5*x^2 + 6*x^3 - 8*x^5 - 9*x^6)/((1 - x^2 - x^3)*(1 + x^2 - x^6)) + O(x^50))))

Formula

a(n) = (1/n) * Sum_{d|n} phi(n/d) * A300738(d).