cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A302960 Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 29, 154, 833, 4527, 24602, 133757, 727293, 3954552, 21502829, 116922075, 635766762, 3457004649, 18797598113, 102212699104, 555785781065, 3022108386151, 16432841038810, 89354263698021, 485867567617493
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2018

Keywords

Comments

Column 3 of A302965.

Examples

			Some solutions for n=5
..0..0..0. .0..0..0. .0..1..1. .0..1..0. .0..1..0. .0..0..0. .0..1..0
..1..1..0. .0..1..1. .0..0..1. .1..1..0. .0..1..0. .0..1..1. .0..1..0
..0..0..0. .0..1..1. .1..0..1. .0..0..0. .1..1..0. .1..1..0. .1..1..1
..1..1..1. .1..0..0. .0..1..1. .1..0..1. .1..0..1. .1..0..0. .0..0..0
..0..0..0. .1..0..1. .0..1..0. .1..1..0. .0..1..1. .1..1..1. .0..0..1
		

Crossrefs

Cf. A302965.

Formula

Empirical: a(n) = 7*a(n-1) -7*a(n-2) -56*a(n-4) +64*a(n-5) for n>6

A302961 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 105, 786, 6206, 49521, 395493, 3157171, 25208524, 201291251, 1607313882, 12834468946, 102483891605, 818339663167, 6534489434899, 52178280478900, 416646642993447, 3326948061363744, 26565877137213190, 212130102108362955
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2018

Keywords

Comments

Column 4 of A302965.

Examples

			Some solutions for n=5
..0..1..0..0. .0..0..1..0. .0..0..1..0. .0..1..0..1. .0..0..1..0
..0..1..0..0. .0..0..1..0. .1..0..1..1. .0..1..0..0. .0..1..0..0
..1..1..0..0. .0..0..1..1. .1..1..1..0. .0..1..0..1. .1..1..0..1
..1..1..0..0. .1..1..0..1. .1..0..1..0. .1..1..0..1. .1..0..0..0
..0..0..1..1. .0..1..0..0. .0..1..0..0. .1..0..1..1. .0..1..1..0
		

Crossrefs

Cf. A302965.

Formula

Empirical: a(n) = 10*a(n-1) -7*a(n-2) -65*a(n-3) -84*a(n-4) +100*a(n-5) +541*a(n-6) +1363*a(n-7) -386*a(n-8) -2958*a(n-9) -6187*a(n-10) +2238*a(n-11) +4139*a(n-12) +7410*a(n-13) -4494*a(n-14) +2183*a(n-15) -3163*a(n-16) +1920*a(n-17) -1968*a(n-18) +256*a(n-19) for n>20

A302962 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 384, 3924, 43588, 493132, 5602382, 63612987, 722646394, 8212135689, 93333017966, 1060806235030, 12057365898916, 137049471727976, 1557782741219620, 17706765695523787, 201267276363226847
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2018

Keywords

Comments

Column 5 of A302965.

Examples

			Some solutions for n=5
..0..0..0..1..1. .0..0..0..0..1. .0..0..0..0..1. .0..0..1..0..0
..1..0..1..0..1. .0..1..1..1..0. .1..1..1..0..0. .0..0..0..0..1
..0..0..1..0..1. .0..1..0..0..0. .1..0..0..1..1. .1..0..1..0..0
..0..1..0..1..0. .1..1..1..1..1. .1..1..0..0..1. .1..0..1..0..1
..1..1..0..0..1. .0..0..1..0..0. .0..1..1..0..0. .1..1..0..1..1
		

Crossrefs

Cf. A302965.

Formula

Empirical recurrence of order 80 (see link above)

A302963 Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 1405, 19868, 314989, 5122000, 83644490, 1365216668, 22301032112, 364489574945, 5958753041614, 97427941260642, 1593122104163405, 26051813455660353, 426031529087524529, 6967143696100020839
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2018

Keywords

Comments

Column 6 of A302965.

Examples

			Some solutions for n=5
..0..1..0..0..1..0. .0..0..1..0..0..1. .0..1..0..0..1..0. .0..0..1..1..1..1
..0..0..0..1..1..0. .0..0..1..0..1..1. .0..0..0..1..1..0. .0..0..1..0..0..0
..0..1..0..0..1..1. .0..0..1..0..0..0. .0..1..0..1..1..0. .0..0..1..1..0..1
..0..1..1..0..1..0. .0..0..1..1..0..1. .0..1..0..1..1..0. .0..1..1..1..0..0
..1..0..0..0..0..1. .1..1..0..1..0..1. .1..1..0..0..0..0. .0..0..0..0..0..1
		

Crossrefs

Cf. A302965.

A302964 Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 5135, 100161, 2257439, 52646395, 1233435694, 28906043997, 677939939546, 15913688413086, 373691293530910, 8777023711297082, 206177629016156813, 4843679190297598859, 113798041132055558867, 2673689164053615749675
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2018

Keywords

Comments

Column 7 of A302965.

Examples

			Some solutions for n=5
..0..1..0..0..1..0..1. .0..1..0..1..1..0..1. .0..1..0..0..1..0..0
..0..0..0..1..1..0..1. .0..0..0..1..1..0..1. .0..0..0..1..0..0..1
..0..0..0..1..1..0..1. .0..1..0..0..1..0..0. .0..0..0..1..0..1..1
..0..1..0..0..1..0..1. .0..0..0..1..1..0..1. .0..0..0..1..0..1..0
..0..0..1..1..1..0..1. .0..1..0..0..1..0..1. .0..1..0..1..0..1..0
		

Crossrefs

Cf. A302965.

A302966 Number of 3Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 154, 786, 3924, 19868, 100161, 505908, 2554201, 12898093, 65130456, 328890172, 1660800969, 8386586118, 42349950959, 213855666444, 1079912639341, 5453263882696, 27537493309346, 139056822182155, 702198983497508
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2018

Keywords

Comments

Row 3 of A302965.

Examples

			Some solutions for n=5
..0..1..0..0..1. .0..1..0..1..1. .0..0..0..0..0. .0..1..0..1..1
..1..1..1..0..1. .1..0..1..0..1. .1..0..1..1..0. .1..0..1..0..1
..0..0..1..1..0. .1..0..1..0..1. .1..1..0..0..0. .0..0..1..1..0
		

Crossrefs

Cf. A302965.

Formula

Empirical: a(n) = 3*a(n-1) +15*a(n-2) -11*a(n-3) -64*a(n-4) -10*a(n-5) +73*a(n-6) +15*a(n-7) -7*a(n-8) +4*a(n-9) -30*a(n-10) -9*a(n-11) +8*a(n-12) for n>13

A302967 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 833, 6206, 43588, 314989, 2257439, 16185343, 116204095, 833483135, 5980966891, 42913914839, 307909560484, 2209334749489, 15852297971877, 113743491247020, 816131893706879, 5855905976037061, 42017301642505309
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2018

Keywords

Comments

Row 4 of A302965.

Examples

			Some solutions for n=5
..0..0..1..1..0. .0..1..0..1..1. .0..0..1..0..1. .0..0..1..1..0
..0..1..1..0..1. .1..0..1..1..0. .0..1..0..1..0. .1..1..0..1..0
..0..0..1..0..0. .0..0..1..0..0. .0..0..0..1..1. .0..1..0..1..1
..0..0..1..1..0. .0..0..1..1..1. .0..1..0..1..1. .0..0..1..1..0
		

Crossrefs

Cf. A302965.

Formula

Empirical: a(n) = 5*a(n-1) +39*a(n-2) -87*a(n-3) -746*a(n-4) +399*a(n-5) +6441*a(n-6) -1542*a(n-7) -31979*a(n-8) +15388*a(n-9) +102271*a(n-10) -99205*a(n-11) -189571*a(n-12) +378314*a(n-13) +95629*a(n-14) -922139*a(n-15) +432966*a(n-16) +1513625*a(n-17) -1169356*a(n-18) -1784530*a(n-19) +1289751*a(n-20) +1680189*a(n-21) -440536*a(n-22) -1343524*a(n-23) -620710*a(n-24) +733726*a(n-25) +1051878*a(n-26) -28193*a(n-27) -795545*a(n-28) -340122*a(n-29) +289414*a(n-30) +324203*a(n-31) +22695*a(n-32) -165451*a(n-33) -67937*a(n-34) +36248*a(n-35) +31158*a(n-36) +3843*a(n-37) -5639*a(n-38) -2823*a(n-39) -518*a(n-40) +244*a(n-41) +316*a(n-42) +16*a(n-43) -28*a(n-44) for n>45

A302968 Number of 5Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 4527, 49521, 493132, 5122000, 52646395, 540681182, 5569126817, 57254087318, 589032216747, 6059464681577, 62328319647566, 641176141999092, 6595539320186789, 67846561446192118, 697921529912134766
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2018

Keywords

Comments

Row 5 of A302965.

Examples

			Some solutions for n=5
..0..0..0..1..0. .0..0..0..1..0. .0..0..0..0..1. .0..0..0..0..1
..1..1..1..1..1. .1..1..0..1..1. .0..1..1..1..0. .1..1..1..0..0
..0..0..1..0..0. .1..1..0..1..0. .1..0..0..1..1. .0..0..1..0..0
..0..1..1..0..1. .1..1..0..1..1. .1..0..1..0..0. .0..1..1..0..1
..1..0..0..0..0. .0..1..0..0..0. .0..1..1..1..0. .1..1..0..1..1
		

Crossrefs

Cf. A302965.

A302969 Number of 6Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 24602, 395493, 5602382, 83644490, 1233435694, 18159869483, 268409524880, 3957450379702, 58402548130271, 861812274348049, 12715310968740330, 187629366615561495, 2768525577015049111
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2018

Keywords

Comments

Row 6 of A302965.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..1..1. .1..1..0..1..0. .1..1..0..1..1. .1..1..0..1..1
..1..0..1..0..0. .0..1..0..1..1. .1..0..0..1..0. .0..1..1..1..0
..1..0..1..1..0. .1..1..0..0..0. .0..1..1..0..1. .0..1..0..1..1
..0..0..1..0..0. .1..0..1..1..1. .0..1..1..0..1. .1..1..0..1..1
..1..1..0..0..1. .0..1..0..0..1. .0..0..0..1..0. .1..1..0..1..1
		

Crossrefs

Cf. A302965.

A302970 Number of 7Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 133757, 3157171, 63612987, 1365216668, 28906043997, 610488691748, 12956909898199, 274201107406761, 5808903569877147, 123055467606278343, 2606329081200670585, 55211783952761651310, 1169521808389101196131
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2018

Keywords

Comments

Row 7 of A302965.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..1..1. .0..0..1..1..0. .0..0..1..1..1. .0..0..1..1..0
..1..0..1..0..0. .1..0..1..0..0. .1..0..1..0..0. .1..0..1..0..1
..0..1..0..1..1. .1..0..1..0..0. .1..0..1..0..1. .1..0..0..1..0
..0..1..0..0..1. .0..0..1..1..0. .0..1..0..1..0. .1..1..0..1..0
..1..1..0..1..1. .0..1..0..0..0. .1..1..0..1..0. .0..1..0..1..0
..1..0..0..1..1. .0..1..1..1..1. .0..1..1..0..1. .1..0..1..1..1
		

Crossrefs

Cf. A302965.
Showing 1-10 of 11 results. Next