cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303004 Expansion of e.g.f. exp(Sum_{k>=1} M(k)*x^k/k!), where M() is the exponential of Mangoldt function (A014963).

Original entry on oeis.org

1, 1, 3, 10, 39, 186, 962, 5587, 35367, 241216, 1771052, 13827925, 114558314, 1001769237, 9208116647, 88737108635, 893505145271, 9379190223746, 102402586369892, 1160487000658679, 13627075242031720, 165524499516422471, 2076762033563394443, 26877177548737581587
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2018

Keywords

Comments

Exponential transform of A014963.

Examples

			E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 10*x^3/3! + 39*x^4/4! + 186*x^5/5! + 962*x^6/6! + 5587*x^7/7! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[Sum[Exp[MangoldtLambda[k]] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Exp[MangoldtLambda[k]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]

Formula

E.g.f.: exp(Sum_{k>=1} A014963(k)*x^k/k!).