A303004 Expansion of e.g.f. exp(Sum_{k>=1} M(k)*x^k/k!), where M() is the exponential of Mangoldt function (A014963).
1, 1, 3, 10, 39, 186, 962, 5587, 35367, 241216, 1771052, 13827925, 114558314, 1001769237, 9208116647, 88737108635, 893505145271, 9379190223746, 102402586369892, 1160487000658679, 13627075242031720, 165524499516422471, 2076762033563394443, 26877177548737581587
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 10*x^3/3! + 39*x^4/4! + 186*x^5/5! + 962*x^6/6! + 5587*x^7/7! + ...
Links
- Eric Weisstein's World of Mathematics, Mangoldt Function
- N. J. A. Sloane, Transforms
Programs
-
Mathematica
nmax = 23; CoefficientList[Series[Exp[Sum[Exp[MangoldtLambda[k]] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! a[n_] := a[n] = Sum[Exp[MangoldtLambda[k]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
Formula
E.g.f.: exp(Sum_{k>=1} A014963(k)*x^k/k!).
Comments