cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303023 Number of anti-binary (no binary branchings) unlabeled rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 66, 139, 297, 642, 1404, 3097, 6888, 15428, 34770, 78785, 179397, 410264, 941935, 2170275, 5016604, 11630024, 27034824, 63000261, 147148341, 344419767, 807746487, 1897829065, 4466643367, 10529301944, 24858143953, 58769113863
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2018

Keywords

Examples

			The a(6) = 8 rooted trees:
  (((((o)))))
  (((ooo)))
  ((oo(o)))
  (oo((o)))
  (o(o)(o))
  ((oooo))
  (ooo(o))
  (ooooo)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=1, 0, 1), `if`(i<1, 0,
          add(b(n-i*j, i-1, max(0, t-j))*binomial(a(i)+j-1, j), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, b(n-1$2, 3)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 27 2018
  • Mathematica
    burt[n_]:=burt[n]=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[burt/@c]],{c,Select[IntegerPartitions[n-1],Length[#]!=2&]}]];
    Table[Length[burt[n]],{n,20}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 1, 0, 1], If[i < 1, 0, Sum[b[n-i*j, i-1, Max[0, t-j]]*Binomial[a[i]+j-1, j], {j, 0, n/i}]]];
    a[n_] := If[n < 2, n, b[n-1, n-1, 3]];
    Array[a, 50] (* Jean-François Alcover, May 16 2021, after Alois P. Heinz *)

Extensions

a(24)-a(34) from Alois P. Heinz, Aug 27 2018