cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303025 Number of series-reduced anti-binary (no unary or binary branchings) unlabeled rooted trees with n nodes.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 3, 4, 7, 11, 17, 28, 46, 74, 123, 205, 341, 571, 964, 1629, 2764, 4707, 8040, 13766, 23639, 40681, 70163, 121256, 209960, 364168, 632694, 1100906, 1918375, 3347346, 5848271, 10229977, 17915018, 31407088, 55116661, 96818589, 170229939
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2018

Keywords

Examples

			The a(10) = 7 rooted trees:
  (oo(oo(ooo)))
  (o(ooo)(ooo))
  (oo(oooooo))
  (ooo(ooooo))
  (oooo(oooo))
  (ooooo(ooo))
  (ooooooooo)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1, 0,
          add(b(n-i*j, i-1, max(0, t-j))*binomial(a(i)+j-1, j), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, b(n-1$2, 3)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 27 2018
  • Mathematica
    zurt[n_]:=zurt[n]=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[zurt/@c]],{c,Select[IntegerPartitions[n-1],Length[#]>2&]}]];
    Table[Length[zurt[n]],{n,20}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1, 0, Sum[b[n-i*j, i - 1, Max[0, t-j]]*Binomial[a[i]+j-1, j], {j, 0, n/i}]]];
    a[n_] :=  If[n < 2, n, b[n-1, n-1, 3]];
    Array[a, 50] (* Jean-François Alcover, May 17 2021, after Alois P. Heinz *)

Extensions

a(36)-a(42) from Alois P. Heinz, Aug 27 2018