A303025 Number of series-reduced anti-binary (no unary or binary branchings) unlabeled rooted trees with n nodes.
1, 0, 0, 1, 1, 1, 2, 3, 4, 7, 11, 17, 28, 46, 74, 123, 205, 341, 571, 964, 1629, 2764, 4707, 8040, 13766, 23639, 40681, 70163, 121256, 209960, 364168, 632694, 1100906, 1918375, 3347346, 5848271, 10229977, 17915018, 31407088, 55116661, 96818589, 170229939
Offset: 1
Keywords
Examples
The a(10) = 7 rooted trees: (oo(oo(ooo))) (o(ooo)(ooo)) (oo(oooooo)) (ooo(ooooo)) (oooo(oooo)) (ooooo(ooo)) (ooooooooo)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2000
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1, 0, add(b(n-i*j, i-1, max(0, t-j))*binomial(a(i)+j-1, j), j=0..n/i))) end: a:= n-> `if`(n<2, n, b(n-1$2, 3)): seq(a(n), n=1..50); # Alois P. Heinz, Aug 27 2018
-
Mathematica
zurt[n_]:=zurt[n]=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[zurt/@c]],{c,Select[IntegerPartitions[n-1],Length[#]>2&]}]]; Table[Length[zurt[n]],{n,20}] (* Second program: *) b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1, 0, Sum[b[n-i*j, i - 1, Max[0, t-j]]*Binomial[a[i]+j-1, j], {j, 0, n/i}]]]; a[n_] := If[n < 2, n, b[n-1, n-1, 3]]; Array[a, 50] (* Jean-François Alcover, May 17 2021, after Alois P. Heinz *)
Extensions
a(36)-a(42) from Alois P. Heinz, Aug 27 2018