A303027 Number of free pure symmetric multifunctions with one atom, n positions, and no empty or unitary parts (subexpressions of the form x[] or x[y]).
1, 0, 0, 1, 1, 1, 3, 5, 7, 15, 28, 47, 90, 175, 319, 607, 1181, 2251, 4325, 8449, 16425, 31992, 62823, 123521, 243047, 480316, 951290, 1886293, 3749341, 7467815, 14893500, 29752398, 59532947, 119274491, 239275400, 480638121, 966571853, 1945901716, 3921699524
Offset: 1
Keywords
Examples
The a(10) = 15 Mathematica expressions: o[o,o[o,o[o,o]]] o[o,o[o,o][o,o]] o[o[o,o],o[o,o]] o[o,o][o,o[o,o]] o[o,o[o,o]][o,o] o[o,o][o,o][o,o] o[o,o[o,o,o,o,o]] o[o,o,o[o,o,o,o]] o[o,o,o,o[o,o,o]] o[o,o,o,o,o[o,o]] o[o,o][o,o,o,o,o] o[o,o,o][o,o,o,o] o[o,o,o,o][o,o,o] o[o,o,o,o,o][o,o] o[o,o,o,o,o,o,o,o]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
allOLZR[n_]:=allOLZR[n]=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allOLZR[h],Select[Union[Sort/@Tuples[allOLZR/@p]],Length[#]>1&]}],{p,IntegerPartitions[g]}]]]; Table[Length[allOLZR[n]],{n,25}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)-v); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
Extensions
Terms a(29) and beyond from Andrew Howroyd, Aug 19 2018
Comments