cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A121941 Number of unlabeled connected simple graphs with n nodes of degree 4 or less.

Original entry on oeis.org

1, 1, 1, 2, 6, 21, 78, 353, 1929, 12207, 89402, 739335, 6800637, 68531618, 748592936, 8788983173, 110201690911, 1468157196474, 20695559603921, 307590282700915, 4805537369573319, 78710267083015571, 1348394635886684901, 24109112440149231355, 449050443283294835914
Offset: 0

Views

Author

Parthasarathy Nambi, Sep 03 2006

Keywords

Comments

Number of graphs of hydrogen bonded water clusters.
This counts the connected graphs where each vertex has degree 4 or less. - Charles R Greathouse IV, Jul 07 2017
Also number of saturated hydrocarbons and allotropes with n carbon, or valence 4, atoms (excluding stereoisomers) following the octet rule. - Natan Arie Consigli, Jul 07 2017

Examples

			With 4 carbons, n-butane, i-butane, cyclobutane, bicyclobutane, methylcyclopropane and tetrahedrane are the 6 isomers satisfying the property above, so a(4)=6. - _Natan Arie Consigli_, Jul 07 2017
If n=5 then the number of graphs of hydrogen bonded water clusters is 21.
		

Crossrefs

Cf. A121942, A243393 (degree 3 or less), A287424 (excludes allotropes), A289157, A289158, A303032 (degree 5 or less).

Programs

  • nauty
    geng -c -D4 ${n} -q | multig -m1 -D4 -u

Extensions

More terms sent by Natan Arie Consigli, Jul 07 2017
Renamed by Andrew Howroyd, Mar 19 2020 based on comment by Charles R Greathouse IV.
a(16)-a(24) from Andrew Howroyd, Mar 19 2020

A303031 Number of unlabeled connected loopless multigraphs with n nodes of degree 5 or less and with single or double edges.

Original entry on oeis.org

1, 1, 2, 7, 43, 282, 2708, 31175, 451701, 7731154, 154264825, 3515514725, 90381251065, 2594105950453, 82437061616923, 2880328250160638, 109987239823116870, 4566153786442575091, 205144850920195457266, 9933105076082553631262, 516439104253062357469829
Offset: 0

Views

Author

Natan Arie Consigli, Jun 04 2018

Keywords

Crossrefs

Programs

  • nauty
    for n in {1..11}; do geng -c -D5 ${n}  -q | multig -m2 -D5 -u; done

Extensions

a(12)-a(20) from Andrew Howroyd, Mar 20 2020

A243393 Number of isomorphism classes of connected 3-regular loopless simple graphs with n vertices and with semi-edges allowed.

Original entry on oeis.org

1, 1, 2, 6, 10, 29, 64, 194, 531, 1733, 5524, 19430, 69322, 262044, 1016740, 4101318, 16996157, 72556640, 317558689, 1424644848, 6536588420, 30647561117, 146647344812, 715511358833, 3556531372395, 17996244725780, 92634418530686, 484756161038264
Offset: 1

Views

Author

Nico Van Cleemput, Jun 04 2014

Keywords

Comments

Also: number of isomorphism classes of connected loopless simple graphs with maximum degree at most 3. - Brendan McKay, Mar 11 2020

Crossrefs

Extensions

a(24)-a(28) from Andrew Howroyd, Mar 20 2020

A303033 Number of unlabeled connected loopless multigraphs with n nodes of degree 5 or less and with single, double or triple edges.

Original entry on oeis.org

1, 1, 3, 12, 81, 535, 5274, 60684, 869238, 14595645, 284939257, 6347472749, 159579271688, 4482770916274, 139578090353236, 4783834092385411, 179397242557917048, 7322223973235272082, 323760818899998259561, 15443359560966718348986, 791699492870169123493379
Offset: 0

Views

Author

Natan Arie Consigli, Jun 04 2018

Keywords

Crossrefs

Programs

  • nauty
    for n in {1..11}; do geng -c -D5 ${n}  -q | multig  -m3 -D5 -u;

Extensions

a(12)-a(20) from Andrew Howroyd, Mar 20 2020

A334547 Number of unlabeled connected loopless multigraphs with n nodes of degree 5 or less.

Original entry on oeis.org

1, 1, 5, 14, 93, 602, 5847, 66289, 937696, 15575285, 301360805, 6663874305, 166516898890, 4654082023569, 144301649717895, 4928171085359360, 184252862642720722, 7501009857590958129, 330928677041195111955, 15754816518916261088582, 806306082299053607173143
Offset: 0

Views

Author

Andrew Howroyd, May 05 2020

Keywords

Crossrefs

Column k=5 of A334546.

Formula

Inverse Euler transform of A333896.
Showing 1-5 of 5 results.