cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303070 a(n) = [x^n] (1/(1 - x))*Product_{k>=1} 1/(1 - x^k)^n.

Original entry on oeis.org

1, 2, 8, 35, 164, 787, 3857, 19147, 96004, 485009, 2465013, 12589315, 64555985, 332158127, 1714001409, 8866730665, 45968787524, 238778897128, 1242417984179, 6474394344503, 33784931507529, 176515163156311, 923265560495737, 4834081924982522, 25334170138318345, 132883719945537587
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 18 2018

Keywords

Crossrefs

Main diagonal of A210764.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - x) Product[1/(1 - x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[1/(1 - x) Exp[n Sum[x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) = [x^n] (1/(1 - x))*exp(n*Sum_{k>=1} x^k/(k*(1 - x^k))).
a(n) = A210764(n,n) = Sum_{j=0..n} A144064(j,n).
a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.352701333486642687772415814165... and c = 0.4068869940800214657298372785820... - Vaclav Kotesovec, May 19 2018