cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A270914 Decimal expansion of a constant related to the asymptotics of A270913.

Original entry on oeis.org

4, 5, 0, 2, 4, 7, 6, 7, 4, 7, 6, 1, 7, 3, 5, 4, 4, 8, 7, 7, 3, 8, 5, 9, 3, 9, 3, 2, 7, 0, 0, 7, 8, 4, 4, 0, 6, 7, 6, 3, 1, 2, 8, 7, 5, 6, 0, 9, 1, 6, 2, 1, 6, 3, 3, 4, 6, 4, 5, 4, 0, 4, 2, 4, 0, 8, 8, 8, 4, 0, 3, 2, 7, 9, 0, 6, 7, 7, 3, 2, 0, 2, 2, 1, 9, 2, 0, 6, 9, 6, 2, 5, 2, 5, 5, 1, 1, 4, 5, 3, 7, 2, 9, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Comments

This constant is very close to exp(5*Pi/(6*sqrt(2))) / sqrt(2) = 4.502476748630924546525119125234175537729... - Vaclav Kotesovec, May 17 2018

Examples

			4.502476747617354487738593932700784406763128756091621633464540424...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/r /. FindRoot[{2*s == QPochhammer[-1, r*s], r*Derivative[0, 1][QPochhammer][-1, r*s] == 2}, {r, 1/2}, {s, 1/2}, WorkingPrecision -> 120], 10, 105][[1]] (* Vaclav Kotesovec, Sep 26 2023 *)

Formula

Equals limit n->infinity A270913(n)^(1/n).

A304782 a(n) = [x^n] (1/(1 - x))*Product_{k>=1} (1 + n*x^k).

Original entry on oeis.org

1, 2, 5, 19, 49, 126, 469, 1177, 2881, 6481, 23101, 53725, 127153, 274288, 581925, 1860751, 4155649, 9279791, 19409221, 39839239, 77052401, 229393207, 481747949, 1035561408, 2082441025, 4153434376, 7822058869, 14686515649, 39394280689, 79657493191, 163600884901
Offset: 0

Views

Author

Ilya Gutkovskiy, May 18 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - x) Product[(1 + n x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[1/(1 - x) Exp[Sum[(-1)^(k + 1) n^k x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[QPochhammer[-n, x]/((1 + n) (1 - x)), {x, 0, n}], {n, 0, 30}]

Formula

a(n) = [x^n] (1/(1 - x))*exp(Sum_{k>=1} (-1)^(k+1)*n^k*x^k/(k*(1 - x^k))).
a(n) = Sum_{j=0..n} A286957(j,n).
Showing 1-2 of 2 results.