A303072 Number of minimal total dominating sets in the n-ladder graph.
1, 4, 4, 16, 16, 49, 81, 169, 324, 625, 1296, 2401, 4900, 9409, 18769, 36481, 71824, 141376, 276676, 544644, 1067089, 2099601, 4116841, 8088336, 15880225, 31181056, 61230625, 120209296, 236083225, 463497841, 910168561, 1787091076, 3509140644, 6890328064, 13529411856
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Ladder Graph.
- Eric Weisstein's World of Mathematics, Minimal Total Dominating Set.
- Index entries for linear recurrences with constant coefficients, signature (-1,1,3,7,8,2,6,6,0,0,-6,-6,-2,-8,-7,-3,-1,1,1).
Programs
-
Mathematica
Table[(RootSum[1 - #^2 - #^3 - #^4 + #^6 &, (9 - 18 #^2 + 23 #^3 - 3 #^4 + 32 #^5) #^n &]/229)^2, {n, 40}] LinearRecurrence[{-1, 1, 3, 7, 8, 2, 6, 6, 0, 0, -6, -6, -2, -8, -7, -3, -1, 1, 1}, {1, 4, 4, 16, 16, 49, 81, 169,324, 625, 1296, 2401, 4900, 9409, 18769, 36481, 71824, 141376, 276676}, 40] CoefficientList[Series[(-1 - 5 x - 7 x^2 - 13 x^3 - 9 x^4 - x^5 - 4 x^6 + 5 x^7 + 13 x^8 + 14 x^9 + 21 x^10 + 15 x^11 + 12 x^12 + 15 x^13 + 9 x^14 + 3 x^15 - 2 x^17 - x^18)/(-1 - x + x^2 + 3 x^3 + 7 x^4 + 8 x^5 + 2 x^6 + 6 x^7 + 6 x^8 - 6 x^11 - 6 x^12 - 2 x^13 - 8 x^14 - 7 x^15 - 3 x^16 - x^17 + x^18 + x^19), {x, 0, 40}], x]
Formula
a(n) = A253412(n)^2.
G.f.: x*(-1 - 5*x - 7*x^2 - 13*x^3 - 9*x^4 - x^5 - 4*x^6 + 5*x^7 + 13*x^8 + 14*x^9 + 21*x^10 + 15*x^11 + 12*x^12 + 15*x^13 + 9*x^14 + 3*x^15 - 2*x^17 - x^18)/(-1 - x + x^2 + 3*x^3 + 7*x^4 + 8*x^5 + 2*x^6 + 6*x^7 + 6*x^8 - 6*x^11 - 6*x^12 - 2*x^13 - 8*x^14 - 7*x^15 - 3*x^16 - x^17 + x^18 + x^19).