cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A303092 Balanced primes of order one ending in 1.

Original entry on oeis.org

211, 1511, 4691, 7841, 9871, 11411, 11731, 12841, 15161, 17431, 17851, 18341, 18731, 20161, 20201, 20521, 20731, 21661, 21911, 22051, 23801, 25391, 25621, 26041, 31051, 34171, 34631, 35851, 35911, 36821, 40111, 40471, 40961, 44041, 44741, 48661, 50441, 51461
Offset: 1

Views

Author

Muniru A Asiru, Apr 18 2018

Keywords

Examples

			211 = (188 + 211 + 213)/3 = 633/3 and 211 = 21*10 + 1.
		

Crossrefs

Intersection of A006562 and A030430.

Programs

  • GAP
    P:=Filtered([1..52000],IsPrime);;
    a:=Filtered(List(Filtered(List([0..Length(P)-3],k->List([1..3],j->P[j+k])),i->Sum(i)/3=i[2]),m->m[2]),l-> l mod 10=1);
  • Maple
    p:=ithprime: a:=n->`if`(add(p(n-k),k=-1..1)=3*p(n) and modp(p(n), 10) = 1,p(n),NULL): seq(a(n),n=3..6000);

A303094 Balanced primes of order one ending in 7.

Original entry on oeis.org

157, 257, 607, 947, 977, 1187, 1367, 1747, 1907, 2287, 2417, 2677, 3307, 3637, 4457, 4597, 4657, 5107, 5387, 5807, 6317, 6367, 6977, 8117, 8747, 9397, 10607, 10657, 11497, 11807, 12497, 12547, 12647, 13177, 13457, 14747, 15467, 15767, 15797, 15907, 16097
Offset: 1

Views

Author

Muniru A Asiru, Apr 18 2018

Keywords

Examples

			157 = (151 + 157 + 163)/3 = 471/3 and 157 = 15*10 + 7.
		

Crossrefs

Intersection of A006562 and A030432.

Programs

  • GAP
    P:=Filtered([1..16200],IsPrime);;
    a:=Filtered(List(Filtered(List([0..Length(P)-3],k->List([1..3],j->P[j+k])),i->Sum(i)/3=i[2]),m->m[2]),l-> l mod 10=7);
  • Maple
    p:=ithprime: a:=n->`if`(add(p(n-k),k=-1..1)=3*p(n) and modp(p(n), 10) = 7,p(n),NULL): seq(a(n),n=3..2000);

A303095 Balanced primes of order one ending in 9.

Original entry on oeis.org

4409, 11299, 16619, 19739, 19949, 22259, 28069, 29269, 29599, 30059, 30449, 32479, 35129, 36229, 41479, 42209, 43189, 44519, 46889, 47869, 48259, 49069, 52529, 53939, 56149, 57119, 58129, 58979, 60509, 63559, 66809, 67169, 67619, 68099, 68699, 74489, 76579
Offset: 1

Views

Author

Muniru A Asiru, Apr 18 2018

Keywords

Examples

			4409 = (4397 + 4409 + 4421)/3 = 13227/3 and 4409 = 440*10 + 9.
		

Crossrefs

Intersection of A006562 and A030433.

Programs

  • GAP
    P:=Filtered([1..78000],IsPrime);;
    a:=Filtered(List(Filtered(List([0..Length(P)-3],k->List([1..3],j->P[j+k])),i->Sum(i)/3=i[2]),m->m[2]),l-> l mod 10=9);
  • Maple
    p:=ithprime: a:=n->`if`(add(p(n-k),k=-1..1)=3*p(n) and modp(p(n), 10) = 9,p(n),NULL): seq(a(n),n=3..8000);
Showing 1-3 of 3 results.