cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A303097 Number of n X 3 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 15, 77, 486, 2869, 17229, 102952, 616065, 3685099, 22045482, 131879323, 788928513, 4719516650, 28233043741, 168895389127, 1010364108842, 6044188782411, 36157478162593, 216300858973502, 1293952564919109
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2018

Keywords

Comments

Column 3 of A303102.

Examples

			Some solutions for n=5
..0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..1..0. .0..1..1
..1..1..0. .1..1..0. .0..0..1. .0..1..1. .1..1..1. .0..0..1. .1..0..1
..1..1..0. .0..1..1. .1..1..0. .0..1..1. .1..0..0. .0..1..1. .0..1..0
..1..0..1. .0..0..1. .0..0..1. .0..0..1. .0..0..1. .1..1..0. .0..0..1
..0..0..0. .1..1..1. .1..1..1. .1..1..1. .1..1..0. .0..0..1. .0..1..1
		

Crossrefs

Cf. A303102.

Formula

Empirical: a(n) = 5*a(n-1) +9*a(n-2) -14*a(n-3) -28*a(n-4) -6*a(n-5) +32*a(n-6) +10*a(n-7) -2*a(n-8) +32*a(n-9) -32*a(n-11).

A303098 Number of n X 4 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

2, 46, 431, 4667, 49534, 523578, 5550469, 58797885, 622939052, 6599795867, 69921718286, 740789814624, 7848336732510, 83149623160674, 880933142617394, 9333093335046307, 98879957242770978, 1047589002709557389
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2018

Keywords

Comments

Column 4 of A303102.

Examples

			Some solutions for n=5
..0..0..1..0. .0..1..1..1. .0..0..1..1. .0..1..1..1. .0..0..0..0
..0..1..0..0. .1..0..0..1. .1..1..0..0. .0..0..1..0. .0..1..0..0
..1..0..1..1. .1..1..0..0. .1..0..0..1. .1..1..0..1. .1..1..0..0
..1..1..0..1. .0..0..0..1. .1..0..1..0. .1..0..0..1. .0..1..1..0
..1..1..0..0. .1..1..1..1. .1..1..1..1. .1..1..1..0. .1..0..1..1
		

Crossrefs

Cf. A303102.

Formula

Empirical: a(n) = 9*a(n-1) +26*a(n-2) -57*a(n-3) -433*a(n-4) -47*a(n-5) +1932*a(n-6) +2731*a(n-7) -3490*a(n-8) -6960*a(n-9) +156*a(n-10) +748*a(n-11) +3388*a(n-12) +5000*a(n-13) +12879*a(n-14) +2488*a(n-15) -9412*a(n-16) -11225*a(n-17) -870*a(n-18) -5309*a(n-19) +3368*a(n-20) -2123*a(n-21) +1230*a(n-22) -349*a(n-23) +121*a(n-24) +28*a(n-25) -26*a(n-26).

A303099 Number of nX5 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

3, 161, 2913, 58160, 1138331, 22292709, 436394066, 8545589681, 167325743073, 3276397352974, 64154700406471, 1256205180765473, 24597599305382336, 481642558107218459, 9430983527094262675, 184666925800707714070
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2018

Keywords

Comments

Column 5 of A303102.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..1..0. .0..0..0..1..0
..1..0..1..1..0. .0..1..1..0..0. .0..1..0..0..1. .0..1..1..0..0
..0..1..0..0..0. .1..1..1..1..1. .1..1..0..0..1. .0..0..1..1..0
..1..0..1..1..0. .1..0..0..0..1. .1..0..0..1..1. .1..1..0..0..0
..1..1..1..0..1. .0..0..0..1..0. .1..1..0..0..1. .1..0..1..0..0
		

Crossrefs

Cf. A303102.

Formula

Empirical recurrence of order 90 (see link above)

A303100 Number of n X 6 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

5, 601, 19393, 709333, 25372284, 906385523, 32409609245, 1158734336743, 41428642572259, 1481227171330646, 52959204974173538, 1893483989293507505, 67698924831526337056, 2420482299622384467005, 86541028547861499552982
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2018

Keywords

Comments

Column 6 of A303102.

Examples

			Some solutions for n=5
..0..1..1..0..0..1. .0..0..1..0..1..0. .0..0..0..1..1..1. .0..0..1..0..1..0
..0..0..0..1..1..0. .0..0..0..1..0..0. .0..0..1..0..1..1. .0..0..0..1..0..1
..0..0..1..1..0..0. .0..0..1..1..1..0. .0..0..1..0..0..1. .0..0..1..1..0..0
..0..0..1..1..1..0. .0..0..1..1..1..1. .0..0..1..1..1..1. .0..0..1..1..0..0
..0..0..0..1..1..1. .0..0..0..0..0..1. .0..0..1..0..0..1. .0..0..0..0..1..1
		

Crossrefs

Cf. A303102.

A303101 Number of nX7 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 2208, 128921, 8650205, 568099880, 37220475492, 2441756629583, 160164698180399, 10505922762123798, 689141410588573095, 45204400412352498100, 2965196935043545360686, 194503015320143538663000
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2018

Keywords

Comments

Column 7 of A303102.

Examples

			Some solutions for n=5
..0..0..1..1..0..1..1. .0..0..1..1..1..1..0. .0..0..1..0..0..0..0
..0..0..1..0..0..1..0. .0..0..1..1..0..0..0. .0..0..1..1..0..1..0
..0..0..0..1..1..0..1. .0..0..0..1..0..0..1. .0..0..0..1..1..0..0
..0..0..1..1..0..0..0. .0..0..1..0..1..1..1. .0..0..1..0..0..1..1
..0..0..1..1..1..1..1. .0..0..1..1..1..0..0. .0..0..1..1..0..1..1
		

Crossrefs

Cf. A303102.

A303103 Number of 3Xn 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 11, 77, 431, 2913, 19393, 128921, 857789, 5706297, 37961366, 252538085, 1680012401, 11176296913, 74350419884, 494616846377, 3290443118074, 21889703025083, 145621450295042, 968748034460686, 6444605189965405
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2018

Keywords

Comments

Row 3 of A303102.

Examples

			Some solutions for n=5
..0..1..1..1..1. .0..0..1..1..0. .0..0..1..1..1. .0..0..1..0..0
..1..0..1..0..0. .1..1..0..0..1. .0..0..0..1..0. .1..1..0..1..0
..0..0..0..1..1. .0..0..0..1..1. .0..1..1..0..1. .1..1..0..0..1
		

Crossrefs

Cf. A303102.

Formula

Empirical: a(n) = 5*a(n-1) +11*a(n-2) +a(n-4) -8*a(n-5) -a(n-6) -20*a(n-7) -2*a(n-8) -13*a(n-9) +3*a(n-10) -6*a(n-11) -5*a(n-12) +a(n-13) -2*a(n-14) for n>15

A303104 Number of 4Xn 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 34, 486, 4667, 58160, 709333, 8650205, 105436196, 1286046720, 15685227253, 191303245493, 2333214940038, 28456911783357, 347072876019793, 4233051764860040, 51628141257110184, 629679277168773956
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2018

Keywords

Comments

Row 4 of A303102.

Examples

			Some solutions for n=5
..0..1..1..1..1. .0..0..1..1..0. .0..1..0..1..1. .0..1..0..0..0
..0..0..1..0..1. .1..0..1..0..0. .1..0..0..1..1. .1..0..0..0..1
..0..0..0..1..1. .1..1..1..1..1. .0..1..1..0..0. .1..1..1..1..0
..1..1..0..0..0. .0..0..0..0..1. .1..1..1..1..1. .1..0..0..1..1
		

Crossrefs

Cf. A303102.

Formula

Empirical: a(n) = 9*a(n-1) +41*a(n-2) -19*a(n-3) +3*a(n-4) -692*a(n-5) -2321*a(n-6) +2649*a(n-7) -1848*a(n-8) -8325*a(n-9) +24753*a(n-10) -18574*a(n-11) -5669*a(n-12) +130211*a(n-13) -63145*a(n-14) -56175*a(n-15) +439103*a(n-16) -1055232*a(n-17) +487761*a(n-18) +905617*a(n-19) -2539340*a(n-20) +3298602*a(n-21) -868897*a(n-22) -2726302*a(n-23) +3256193*a(n-24) -3669871*a(n-25) +652616*a(n-26) +1228590*a(n-27) -2015706*a(n-28) +1416147*a(n-29) -341988*a(n-30) -424681*a(n-31) +406254*a(n-32) -69966*a(n-33) -14182*a(n-34) +10399*a(n-35) -13454*a(n-36) -1436*a(n-37) +4777*a(n-38) +451*a(n-39) -713*a(n-40) -42*a(n-41) +32*a(n-42) for n>43

A303105 Number of 5Xn 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 111, 2869, 49534, 1138331, 25372284, 568099880, 12700233541, 284202349097, 6359037680577, 142285824095768, 3183697496083230, 71236519396617958, 1593945862977398560, 35665181412067143397, 798022847623306938661
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2018

Keywords

Comments

Row 5 of A303102.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..1..0..1..0. .0..1..0..0..1. .1..0..0..1..0. .0..1..0..1..1
..0..0..1..1..1. .0..0..1..1..0. .0..1..1..1..1. .1..1..1..0..1
..0..0..1..0..1. .1..1..1..0..1. .0..1..1..0..0. .1..0..1..0..1
..0..1..0..0..0. .1..0..0..0..0. .0..0..0..1..0. .0..1..0..1..0
		

Crossrefs

Cf. A303102.

A303106 Number of 6Xn 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 361, 17229, 523578, 22292709, 906385523, 37220475492, 1524895247525, 62554206264579, 2565661994238856, 105233833702602217, 4316305100898465120, 177039165517795607628, 7261509407874389623218, 297840901987105112478569
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2018

Keywords

Comments

Row 6 of A303102.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..1..1. .0..0..0..0..0. .0..0..0..1..0. .0..0..0..1..0
..1..0..1..1..1. .1..1..1..1..1. .0..1..0..1..1. .1..1..1..0..0
..0..1..0..0..1. .0..0..0..0..0. .0..0..1..1..0. .1..0..1..1..1
..0..1..0..1..0. .1..1..0..1..1. .1..1..0..0..1. .0..1..1..0..0
..0..0..1..0..0. .1..1..0..0..1. .1..1..1..0..0. .0..0..0..1..1
		

Crossrefs

Cf. A303102.

A303107 Number of 7Xn 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1172, 102952, 5550469, 436394066, 32409609245, 2441756629583, 183384084351689, 13794436866124300, 1037425601212697006, 78023920445683729803, 5868131456816299629031, 441338827948853709668453
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2018

Keywords

Comments

Row 7 of A303102.

Examples

			Some solutions for n=5
..0..0..0..1..0. .0..0..0..0..0. .0..0..0..1..1. .0..0..0..1..0
..0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..1
..0..0..0..1..1. .1..0..1..0..1. .0..0..0..1..1. .0..0..0..1..1
..1..1..1..0..1. .0..1..0..1..0. .0..1..0..0..0. .0..1..0..0..1
..1..0..1..1..1. .1..0..1..0..1. .1..1..0..1..1. .1..0..1..0..0
..0..0..1..0..1. .0..1..0..0..0. .1..0..0..1..0. .1..0..0..1..0
..0..1..1..1..0. .1..1..1..1..0. .0..1..0..0..1. .1..1..1..0..1
		

Crossrefs

Cf. A303102.
Showing 1-10 of 11 results. Next