cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303216 A(n,k) is the n-th Fibonacci number with exactly k prime factors (counted with multiplicity); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

2, 21, 3, 8, 34, 5, 6765, 610, 55, 13, 2584, 196418, 987, 377, 89, 144, 701408733, 317811, 10946, 4181, 233, 832040, 102334155, 1134903170, 2178309, 75025, 17711, 1597, 86267571272, 267914296, 12586269025, 365435296162, 32951280099, 3524578, 121393, 28657
Offset: 1

Views

Author

Alois P. Heinz, Apr 19 2018

Keywords

Examples

			Square array A(n,k) begins:
    2,    21,       8,         6765,           2584,                 144, ...
    3,    34,     610,       196418,      701408733,           102334155, ...
    5,    55,     987,       317811,     1134903170,         12586269025, ...
   13,   377,   10946,      2178309,   365435296162,      10610209857723, ...
   89,  4181,   75025,  32951280099,  6557470319842,    2111485077978050, ...
  233, 17711, 3524578, 139583862445, 72723460248141, 7540113804746346429, ...
		

Crossrefs

Columns k=1-2 give: A005478, A053409.
Row n=1 gives A072397.

Programs

  • Maple
    F:= combinat[fibonacci]: with(numtheory):
    A:= proc() local h, p, q; p, q:= proc() [] end, 2;
          proc(n, k)
            while nops(p(k))
    				
  • Mathematica
    A[n_, k_] := Module[{F = Fibonacci, h, p, q = 2}, p[_] = {}; While[ Length[p[k]] < n, q = q+1; h = PrimeOmega[F[q]]; p[h] = Append[p[h], F[q]]]; p[k][[n]]];
    Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Feb 05 2021, after Alois P. Heinz *)

Formula

A(n,k) = A000045(A303215(n,k)).
A001222(A(n,k)) = k.