A303216 A(n,k) is the n-th Fibonacci number with exactly k prime factors (counted with multiplicity); square array A(n,k), n>=1, k>=1, read by antidiagonals.
2, 21, 3, 8, 34, 5, 6765, 610, 55, 13, 2584, 196418, 987, 377, 89, 144, 701408733, 317811, 10946, 4181, 233, 832040, 102334155, 1134903170, 2178309, 75025, 17711, 1597, 86267571272, 267914296, 12586269025, 365435296162, 32951280099, 3524578, 121393, 28657
Offset: 1
Examples
Square array A(n,k) begins: 2, 21, 8, 6765, 2584, 144, ... 3, 34, 610, 196418, 701408733, 102334155, ... 5, 55, 987, 317811, 1134903170, 12586269025, ... 13, 377, 10946, 2178309, 365435296162, 10610209857723, ... 89, 4181, 75025, 32951280099, 6557470319842, 2111485077978050, ... 233, 17711, 3524578, 139583862445, 72723460248141, 7540113804746346429, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..16, flattened
Crossrefs
Programs
-
Maple
F:= combinat[fibonacci]: with(numtheory): A:= proc() local h, p, q; p, q:= proc() [] end, 2; proc(n, k) while nops(p(k))
-
Mathematica
A[n_, k_] := Module[{F = Fibonacci, h, p, q = 2}, p[_] = {}; While[ Length[p[k]] < n, q = q+1; h = PrimeOmega[F[q]]; p[h] = Append[p[h], F[q]]]; p[k][[n]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Feb 05 2021, after Alois P. Heinz *)