cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303259 Number of ordered rooted trees with n non-root nodes such that the maximal outdegree equals ceiling(n/2).

Original entry on oeis.org

1, 1, 1, 3, 8, 15, 53, 84, 326, 495, 1997, 3003, 12370, 18564, 77513, 116280, 490306, 735471, 3124541, 4686825, 20030000, 30045015, 129024469, 193536720, 834451788, 1251677700, 5414950283, 8122425444, 35240152706, 52860229080, 229911617041, 344867425584
Offset: 0

Views

Author

Alois P. Heinz, Apr 20 2018

Keywords

Crossrefs

Bisections give: A291662 (even part), A005809 (odd part).
Cf. A203717.

Programs

  • Maple
    b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1, k), j=1..min(1, u))+
          add(b(u+j-1, o-j, k), j=1..min(k, o)))
        end:
    a:= n-> `if`(n=0, 1, (j-> b(0, n, j)-b(0, n, j-1))(ceil(n/2))):
    seq(a(n), n=0..35);
  • Mathematica
    b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1,
         Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] +
         Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
    a[n_] := If[n == 0, 1, With[{j = Ceiling[n/2]}, b[0, n, j]-b[0, n, j-1]]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)

Formula

a(n) = A203717(n,ceiling(n/2)).