cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303303 Generalized 23-gonal (or icositrigonal) numbers: m*(21*m - 19)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 20, 23, 61, 66, 123, 130, 206, 215, 310, 321, 435, 448, 581, 596, 748, 765, 936, 955, 1145, 1166, 1375, 1398, 1626, 1651, 1898, 1925, 2191, 2220, 2505, 2536, 2840, 2873, 3196, 3231, 3573, 3610, 3971, 4010, 4390, 4431, 4830, 4873, 5291, 5336, 5773, 5820, 6276, 6325, 6800, 6851, 7345, 7398, 7911, 7966
Offset: 0

Views

Author

Omar E. Pol, Jun 24 2018

Keywords

Comments

168*a(n) + 361 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317319. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), this sequence (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Mathematica
    CoefficientList[ Series[-x (x^2 + 19x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 20, 23, 61}, 51] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 19*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^50))) \\ Colin Barker, Jun 27 2018

Formula

From Colin Barker, Jun 27 2018: (Start)
G.f.: x*(1 + 19*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = n*(21*n + 38) / 8 for n even.
a(n) = (21*n - 17)*(n + 1) / 8 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)
Sum_{n>=1} 1/a(n) = 42/361 + 2*Pi*cot(2*Pi/21)/19. - Amiram Eldar, Mar 01 2022