cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303325 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 8, 1, 8, 1, 8, 4, 2, 16, 1, 32, 1, 8, 1, 32, 1, 32, 4, 2, 16, 2, 64, 1, 128, 1, 12, 4, 32, 1, 128, 1, 128, 4, 10, 64, 3, 64, 2, 256, 1, 512, 1, 46, 25, 62, 3, 128, 1, 512, 1, 512, 4, 50, 368, 56, 204, 10, 256, 2, 1024, 1, 2048, 1, 204, 201, 758, 136, 744, 9, 512, 1
Offset: 1

Views

Author

R. H. Hardin, Apr 21 2018

Keywords

Comments

Table starts
...1.1...1..1...1....1.....1.....1.......1........1.........1..........1
...2.2...8..8..32...32...128...128.....512......512......2048.......2048
...4.1...4..1...4....1.....4.....1.......4........1.........4..........1
...8.2...8..2..12...10....46....50.....204......290......1034.......1682
..16.1..16..4..64...25...368...201....2545.....1855.....21082......17922
..32.2..32..3..62...56...758...822...11950....15100....206189.....274746
..64.1..64..3.204..136..2956..3929...69328...130531...2005898....4227664
.128.2.128.10.744..531.15494.24759..629227..1489177..33766564...89782726
.256.1.256..9.900.1035.44101.97205.3531980.11297739.359263250.1265799068

Examples

			All solutions for n=5 k=4
..0..0..1..1. .0..0..0..1. .0..1..1..1. .0..1..0..1
..0..0..1..1. .0..0..0..1. .0..1..1..1. .0..1..0..1
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..0..1..1. .0..0..0..1. .0..1..1..1. .0..1..0..1
..0..0..1..1. .0..0..0..1. .0..1..1..1. .0..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 3 is A000079(n-1) for n>2.
Row 2 is A158302(n+1).
Row 3 is A010685(n+8).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = a(n-2)
k=3: a(n) = 2*a(n-1) for n>3
k=4: [order 55] for n>57
k=5: [order 33] for n>35
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 4*a(n-2)
n=3: a(n) = a(n-2)
n=4: [order 18] for n>19
n=5: [order 34] for n>35