A303327 Number of 5Xn 0..1 arrays with every element equal to 0, 2, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
16, 1, 16, 4, 64, 25, 368, 201, 2545, 1855, 21082, 17922, 193932, 178310, 1883444, 1798105, 18748029, 18258149, 188640260, 186011969, 1906833092, 1898120576, 19312818727, 19383847701, 195770541009, 198022534325, 1985235845500
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1..0..0. .0..1..0..1..0. .0..0..0..1..0. .0..0..1..1..0 ..0..0..1..0..0. .0..1..0..1..0. .1..0..1..1..1. .1..0..0..1..1 ..0..1..0..1..0. .1..1..1..1..1. .0..0..0..0..0. .0..0..0..0..0 ..0..0..1..0..0. .0..0..0..0..0. .1..1..1..0..1. .1..1..0..0..1 ..1..0..0..0..1. .0..0..0..0..0. .0..1..0..0..0. .1..1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A303325.
Formula
Empirical: a(n) = 6*a(n-1) +12*a(n-2) -129*a(n-3) +69*a(n-4) +842*a(n-5) -1297*a(n-6) -839*a(n-7) +3412*a(n-8) -9036*a(n-9) +11871*a(n-10) +17108*a(n-11) -45954*a(n-12) +47570*a(n-13) -53012*a(n-14) -66076*a(n-15) +203444*a(n-16) -165552*a(n-17) +190584*a(n-18) +4296*a(n-19) -282112*a(n-20) +206832*a(n-21) -309856*a(n-22) +208160*a(n-23) -21344*a(n-24) +101312*a(n-25) -1024*a(n-26) +22336*a(n-27) -32256*a(n-28) +2560*a(n-29) -2816*a(n-30) +2816*a(n-31) +1536*a(n-32) +1024*a(n-33) -1024*a(n-34) for n>35
Comments