A303332 7-smooth numbers representable as the sum of two relatively prime 7-smooth numbers.
2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 21, 25, 27, 28, 32, 35, 36, 49, 50, 54, 64, 81, 125, 126, 128, 135, 189, 225, 245, 250, 256, 343, 375, 625, 1029, 2401, 4375
Offset: 1
Examples
a(13) = 16 = 1 + 15 = 7 + 9 = 2^4 = 1 + 3 * 5 = 7 + 3^2. a(25) = 81 = 1 + 80 = 25 + 56 = 32 + 49 = 3^4 = 1 + 2^4 * 5 = 5^2 + 2^3 * 7 = 2^5 + 7^2.
References
- T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, 1986.
Links
- B. M. M. de Weger, Algorithms for Diophantine Equations, Centrum voor Wiskunde en Informatica, Amsterdam, 1989.
Crossrefs
Cf. A085153 (subsequence)
Programs
-
Mathematica
s7 = Select[Range[10000], FactorInteger[#][[-1, 1]] <= 7 &]; Select[s7, AnyTrue[ IntegerPartitions[#, {2}, s7], GCD @@ # == 1 &] &] (* Giovanni Resta, May 30 2018 *)
Comments