cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A303359 Bi-unitary near-perfect numbers: bi-unitary abundant numbers k such that the abundance d = bsigma(k) - 2*k is a bi-unitary divisor of k, where bsigma(k) is the sum of bi-unitary divisors of k (A188999).

Original entry on oeis.org

24, 40, 56, 80, 88, 104, 120, 224, 360, 432, 672, 832, 992, 1008, 1296, 1456, 1504, 1584, 1888, 1952, 2016, 2160, 2800, 3800, 5624, 5800, 7424, 7616, 9112, 10080, 11096, 13736, 15872, 16256, 17816, 22848, 24448, 28544, 30592, 32128, 33728, 51136, 62464, 66368
Offset: 1

Views

Author

Amiram Eldar and Michael De Vlieger, Apr 22 2018

Keywords

Comments

The bi-unitary version of A181595.

Examples

			24 is in the sequence since the sum of its bi-unitary divisors is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = 60 and 60 - 2*24 = 12 is a bi-unitary divisor of 24.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; biunitaryDivisorQ[ div_, n_] := If[Mod[#2, #1]==0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]]&, {#1, #2/#1}]]==1, False]& @@{div, n}; aQ[n_] := Module[{d=bsigma[n]-2n},If[d<=0, False,biunitaryDivisorQ[d,n]]]; s={}; Do[If[ aQ[n], AppendTo[s,n] ], {n, 1, 10000}]; s
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    isok(n) = my(divs = biudivs(n), sig = vecsum(divs)); (sig > 2*n) && vecsearch(divs, sig - 2*n); \\ Michel Marcus, Apr 27 2018
Showing 1-1 of 1 results.