A303362 Number of strict integer partitions of n with pairwise indivisible parts.
1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 4, 6, 7, 7, 9, 11, 12, 13, 15, 17, 20, 23, 25, 27, 32, 35, 40, 45, 50, 55, 58, 67, 78, 84, 95, 101, 113, 124, 137, 153, 169, 180, 198, 219, 242, 268, 291, 319, 342, 374, 412, 450, 492, 535, 573, 632, 685, 746, 813, 868, 944
Offset: 1
Keywords
Examples
The a(14) = 7 strict integer partitions are (14), (11,3), (10,4), (9,5), (8,6), (7,5,2), (7,4,3).
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..450, (terms up to a(250) from Andrew Howroyd)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]==={}&]],{n,60}]
-
PARI
lista(nn)={local(Cache=Map()); my(excl=vector(nn, n, sumdiv(n, d, 2^(n-d)))); my(a(n, m=n, b=0)= if(n==0, 1, while(m>n || bittest(b,0), m--; b>>=1); my(hk=[n, m, b], z); if(!mapisdefined(Cache, hk, &z), z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0); mapput(Cache, hk, z)); z)); for(n=1, nn, print1(a(n), ", ")) } \\ Andrew Howroyd, Nov 02 2019