cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A303362 Number of strict integer partitions of n with pairwise indivisible parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 4, 6, 7, 7, 9, 11, 12, 13, 15, 17, 20, 23, 25, 27, 32, 35, 40, 45, 50, 55, 58, 67, 78, 84, 95, 101, 113, 124, 137, 153, 169, 180, 198, 219, 242, 268, 291, 319, 342, 374, 412, 450, 492, 535, 573, 632, 685, 746, 813, 868, 944
Offset: 1

Views

Author

Gus Wiseman, Apr 22 2018

Keywords

Examples

			The a(14) = 7 strict integer partitions are (14), (11,3), (10,4), (9,5), (8,6), (7,5,2), (7,4,3).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]==={}&]],{n,60}]
  • PARI
    lista(nn)={local(Cache=Map());
      my(excl=vector(nn, n, sumdiv(n, d, 2^(n-d))));
      my(a(n, m=n, b=0)=
         if(n==0, 1,
            while(m>n || bittest(b,0), m--; b>>=1);
            my(hk=[n, m, b], z);
            if(!mapisdefined(Cache, hk, &z),
              z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0);
              mapput(Cache, hk, z)); z));
       for(n=1, nn, print1(a(n), ", "))
    } \\ Andrew Howroyd, Nov 02 2019

A303365 Number of integer partitions of the n-th squarefree number using squarefree numbers.

Original entry on oeis.org

1, 2, 3, 6, 9, 12, 28, 36, 60, 76, 96, 150, 228, 342, 416, 504, 877, 1484, 1759, 2079, 2885, 3387, 3968, 5413, 6304, 7328, 9852, 11395, 13159, 20082, 23056, 39532, 51385, 66488, 85660, 97078, 109907, 140465, 158573, 226918, 255268, 286920, 361606, 405470
Offset: 1

Views

Author

Gus Wiseman, Apr 22 2018

Keywords

Examples

			The a(5) = 9 partitions are (6), (51), (33), (321), (3111), (222), (2211), (21111), (111111).
		

Crossrefs

Programs

  • Mathematica
    nn=80;
    sqf=Select[Range[nn],SquareFreeQ];
    ser=Product[1/(1-x^sqf[[n]]),{n,Length[sqf]}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,sqf}]

Formula

a(n) = A073576(A005117(n)).

A305080 Number of connected strict integer partitions of n with pairwise indivisible and squarefree parts.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 2, 2, 3, 2, 2, 4, 2, 3, 4, 4, 3, 4, 3, 4, 5, 6, 4, 6, 5, 7, 6, 5, 6, 8, 6, 6, 6, 10, 11, 11, 9, 11, 9, 13
Offset: 1

Views

Author

Gus Wiseman, May 25 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.
Conjecture: This sequence is "eventually increasing," meaning that for all k >= 0 there exists an m >= 0 such that a(n) > k for all n > m. For k = 0 it appears we can take m = 18, for example.

Examples

			The a(52) = 6 strict partitions together with their corresponding multiset multisystems (which are clutters):
(21,15,10,6): {{2,4},{2,3},{1,3},{1,2}}
(22,14,10,6): {{1,5},{1,4},{1,3},{1,2}}
     (30,22): {{1,2,3},{1,5}}
     (38,14): {{1,8},{1,4}}
     (42,10): {{1,2,4},{1,3}}
      (46,6): {{1,9},{1,2}}
The a(60) = 8 strict partitions together with their corresponding multiset multisystems (which are clutters):
(21,15,14,10): {{2,4},{2,3},{1,4},{1,3}}
    (33,21,6): {{2,5},{2,4},{1,2}}
   (35,15,10): {{3,4},{2,3},{1,3}}
    (39,15,6): {{2,6},{2,3},{1,2}}
      (34,26): {{1,7},{1,6}}
      (38,22): {{1,8},{1,5}}
      (39,21): {{2,6},{2,4}}
      (46,14): {{1,9},{1,4}}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,And@@SquareFreeQ/@#,Length[zsm[#]]==1,Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,50}]
Showing 1-3 of 3 results.