cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303375 Numbers of the form a^5 + b^6, with integers a, b > 0.

Original entry on oeis.org

2, 33, 65, 96, 244, 307, 730, 761, 972, 1025, 1088, 1753, 3126, 3189, 3854, 4097, 4128, 4339, 5120, 7221, 7777, 7840, 8505, 11872, 15626, 15657, 15868, 16649, 16808, 16871, 17536, 18750, 20903, 23401, 32432, 32769, 32832, 33497, 36864, 46657, 46688, 46899, 47680, 48393
Offset: 1

Views

Author

M. F. Hasler, Apr 22 2018

Keywords

Comments

Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form.
This sequence is among others motivated by the hard-to-compute sequence A300567 = numbers z such that z^7 = x^5 + y^6 for some x, y >= 1.

Crossrefs

Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6).
See also A300567: numbers z such that z^7 = x^5 + y^6 for some x, y >= 1.

Programs

  • PARI
    is(n,k=5,m=6)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    A303375_vec(L=10^5,k=5,m=6,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k), listput(S,a^m+b^k)));Set(S)} \\ all terms up to limit L

Formula

a(n) >> n^(30/11). Probably this is the correct asymptotic order. - Charles R Greathouse IV, Jan 23 2025