cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303386 Number of aperiodic factorizations of n > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 7, 1, 2, 2, 4, 1, 5, 1, 6, 2, 2, 2, 7, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 1, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 3, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 7, 1, 5, 1, 7, 5
Offset: 2

Views

Author

Gus Wiseman, Apr 23 2018

Keywords

Comments

An aperiodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities are relatively prime.

Examples

			The a(36) = 7 aperiodic factorizations are (2*2*9), (2*3*6), (2*18), (3*3*4), (3*12), (4*9), and (36). Missing from this list are (2*2*3*3) and (6*6).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],GCD@@Length/@Split[#]===1&]],{n,2,100}]
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A303386(n) = if(1==n,n,my(r); sumdiv(A052409(n),d, ispower(n,d,&r); moebius(d)*A001055(r))); \\ Antti Karttunen, Sep 25 2018

Formula

a(n) = Sum_{d|A052409(n)} mu(d) * A001055(n^(1/d)), where mu = A008683.

Extensions

More terms from Antti Karttunen, Sep 25 2018