cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318190 a(0) = 0, a(1) = 1; for n >= 1, a(2*n) = a(2*n-1) - 2*a(n), a(2*n+1) = 2*n - a(2*n).

Original entry on oeis.org

0, 1, -1, 3, 5, -1, -7, 13, 3, 5, 7, 3, 17, -5, -31, 45, 39, -23, -33, 51, 37, -17, -23, 45, 11, 13, 23, 3, 65, -37, -127, 157, 79, -47, -1, 35, 101, -65, -167, 205, 131, -91, -57, 99, 145, -101, -191, 237, 215, -167, -193, 243, 197, -145, -151, 205, 75, -19, 55, 3, 257, -197, -511, 573, 415, -351, -257, 323, 325
Offset: 0

Views

Author

Altug Alkan, Aug 20 2018

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n eq 1 select 1 else n mod 2 eq 0 select Self(n-1)-2*Self(n div 2) else n-1 - Self(n-1): n in [1..70]]; // Vincenzo Librandi, Aug 28 2018
  • Maple
    f:= proc(n) option remember;
      if n::even then procname(n-1) - 2*procname(n/2)
      else n-1-procname(n-1)
      fi
    end proc:
    f(0):= 0: f(1):= 1:
    map(f, [$0..100]); # Robert Israel, Aug 28 2018
  • Mathematica
    a[0]=0; a[1]=1; a[n_] := a[n] = If[EvenQ[n], a[n-1] - 2 a[n/2], n-1 - a[n - 1]]; Array[a, 70, 0] (* Giovanni Resta, Aug 27 2018 *)
  • PARI
    a(n)=if(n<=1, n, if(n%2==0, a(n-1)-2*a(n/2), n-1-a(n-1)));
    
  • PARI
    a = vector(99); print1 (0", "); for(n=1, #a, print1 (a[n]=if(n==1, 1, if(n%2, n-1-a[n-1], a[n-1]-2*a[n/2]))", "));
    

Formula

G.f. g(x) satisfies g(x) = (x+x^5)/(1-x^2)^2 - x*g(-x) - 2*g(x^2). - Robert Israel, Aug 28 2018

A318163 a(0) = a(3) = 0, a(1) = a(2) = 1; for n >= 2, a(2*n) = -a(n-1) and a(2*n+1) = -a(n-1)-a(n).

Original entry on oeis.org

0, 1, 1, 0, -1, -2, -1, -1, 0, 1, 1, 3, 2, 3, 1, 2, 1, 1, 0, -1, -1, -2, -1, -4, -3, -5, -2, -5, -3, -4, -1, -3, -2, -3, -1, -2, -1, -1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0, -1, -1, -2, -1, -3, -2, -3, -1, -4, -3, -5, -2, -5, -3, -4, -1, -6, -5, -9, -4, -11, -7
Offset: 0

Views

Author

Altug Alkan, Aug 19 2018

Keywords

Comments

Inspired by A002487.
Alternatively, a(0) = 0, a(1) = 1; for n >= 1, a(2*n) = a(2*n-1) - a(2*n-2), a(2*n+1) = a(2*n) - a(n). Note that if b(0) = 0, b(1) = 1; for n >= 1, b(2*n) = b(2*n-1) - b(n), b(2*n+1) = b(2*n) - b(2*n-1), then b(n) + A213369(n+1) = 0 for all n >= 1.
The main block structure of this sequence is described by A020714.

Crossrefs

Programs

  • Mathematica
    a[0]=a[3]=0; a[1]=a[2]=1; a[n_] := a[n] = If[EvenQ[n], -a[n/2-1], -a[(n-1)/2 - 1] - a[(n-1)/2]]; Array[a, 101, 0] (* Giovanni Resta, Aug 27 2018 *)
  • PARI
    a = vector(100); print1(0", "); for(k=1, #a, print1 (a[k]=if(k<=2,1, my (n=k\2); if (k%2==0, -a[n-1], a[2*n]-a[n]))", "));

Formula

a(5*2^k-2) = 0 for all k >= 0.

A319010 a(0) = 0, a(1) = 1; for n >= 1, a(2*n) = a(2*n-1), a(2*n+1) = 2*(n - a(n)).

Original entry on oeis.org

0, 1, 1, 0, 0, 2, 2, 6, 6, 8, 8, 6, 6, 8, 8, 2, 2, 4, 4, 2, 2, 4, 4, 10, 10, 12, 12, 10, 10, 12, 12, 26, 26, 28, 28, 26, 26, 28, 28, 34, 34, 36, 36, 34, 34, 36, 36, 26, 26, 28, 28, 26, 26, 28, 28, 34, 34, 36, 36, 34, 34, 36, 36, 10, 10, 12, 12, 10, 10, 12, 12, 18, 18, 20, 20, 18, 18, 20, 20
Offset: 0

Views

Author

Altug Alkan, Sep 07 2018

Keywords

Crossrefs

Programs

  • PARI
    a = vector(100); print1(0", "); for(k=1, #a, print1 (a[k]=if(k==1, 1, my (n=k\2); if (k%2==0, a[2*n-1], 2*(n-a[n])))", "));
    
  • PARI
    a(n) = if(n<=1, n, if(n%2==0, a(n-1),2*((n-1)/2-a((n-1)/2))));
Showing 1-3 of 3 results.