A303430 Number of binary words of length n with exactly twice as many occurrences of subword 101 as occurrences of subword 010.
1, 2, 4, 6, 10, 17, 28, 49, 84, 148, 263, 472, 858, 1568, 2893, 5372, 10034, 18824, 35428, 66898, 126683, 240483, 457334, 870956, 1660850, 3171112, 6061596, 11597587, 22206775, 42551339, 81591256, 156553245, 300565760, 577360360, 1109601934, 2133499936
Offset: 0
Keywords
Examples
a(0) = 1: the empty word. a(1) = 2: 0, 1. a(2) = 4: 00, 01, 10, 11. a(3) = 6: 000, 001, 011, 100, 110, 111. a(4) = 10: 0000, 0001, 0011, 0110, 0111, 1000, 1001, 1100, 1110, 1111. a(5) = 17: 00000, 00001, 00011, 00110, 00111, 01100, 01110, 01111, 10000, 10001, 10011, 10101, 11000, 11001, 11100, 11110, 11111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3448
Programs
-
Maple
b:= proc(n, t, h, c) option remember; `if`(abs(c)>2*n, 0, `if`(n=0, 1, b(n-1, [1, 3, 1][t], 2, c-`if`(h=3, 2, 0)) + b(n-1, 2, [1, 3, 1][h], c+`if`(t=3, 1, 0)))) end: a:= n-> b(n, 1$2, 0): seq(a(n), n=0..50);