A303436 Primes p such that all the composite numbers between p and its next prime have no more than 2 distinct prime factors.
2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 43, 47, 53, 71, 79, 97, 107, 157, 191, 223, 431, 499, 673, 1151, 1213, 2591, 51199, 139967, 472391, 703123, 786431, 995327, 57395627, 63700991, 169869311, 4076863487, 10871635967
Offset: 1
Examples
157 is in the sequence since it is a prime, and the composite numbers between it and its next prime, 163, have only 2 distinct prime factors: 158 = 2*79, 159 = 3*53, 160 = 2^5*5, 161 = 7*23, and 162 = 2*3^4.
Crossrefs
Cf. A078883.
Programs
-
Mathematica
b[n_] := Max[Map[PrimeNu, Range[n + 1, NextPrime[n] - 1]]]; c[n_] := b[Prime[n]]; a={}; Do[If[c[n] < 3, AppendTo[a, Prime[n]]], {n, 1, 10^7}]; a
-
PARI
isok(p) = {if (isprime(p), for(c=p+1, nextprime(p+1)-1, if (omega(c) != 2, return(0));); return (1););} \\ Michel Marcus, Apr 26 2018
Extensions
a(36) from Michel Marcus, Apr 26 2018
a(37)-a(38) from Giovanni Resta, Apr 26 2018
Comments