cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303442 Expansion of Product_{k>=1} ((1 + 4^k*x^k)/(1 - 4^k*x^k))^(1/4^k).

Original entry on oeis.org

1, 2, 4, 18, 34, 166, 544, 2222, 5396, 29622, 101276, 411206, 1170986, 5435466, 20007472, 90854146, 253956882, 1160301990, 4412414972, 18080729238, 56012061494, 275783908498, 1010620487696, 4103148863306, 12730394683264, 58227896627114, 223877604671508
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Exp[Sum[((-1)^j - 1) / (j*(1 - 1/(4^(j-1)*x^j))), {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 25 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+4^k*x^k)/(1-4^k*x^k))^(1/4^k)))

A303491 Expansion of Product_{k>=1} ((1 - 8^k*x^k)/(1 + 8^k*x^k))^(1/8^k).

Original entry on oeis.org

1, -2, 0, -42, 86, -1638, 1428, -71286, 218592, -3941590, 5374096, -187901262, 661408902, -10769651242, 18007942140, -597519823962, 2262843922694, -34034727280806, 65527429637360, -1858398841872062, 7543997928104274, -118580678725935186
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Exp[Sum[(1 - (-1)^j) / (j*(1 - 1/(8^(j-1)*x^j))), {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 25 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1-8^k*x^k)/(1+8^k*x^k))^(1/8^k)))

Formula

G.f.: exp(Sum_{j>=1} ((1 - (-1)^j) / (j*(1 - 1/(8^(j-1)*x^j))) )). - Vaclav Kotesovec, Apr 25 2018
Showing 1-2 of 2 results.