A303456 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 232, 128, 16, 32, 512, 1690, 1696, 512, 32, 64, 2048, 12340, 22756, 12408, 2048, 64, 128, 8192, 90112, 306448, 306767, 90800, 8192, 128, 256, 32768, 658204, 4129588, 7626768, 4136339, 664512, 32768, 256, 512, 131072
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..0..0. .0..0..0..1. .0..0..1..0. .0..0..0..0. .0..0..0..1 ..1..1..1..0. .1..1..0..1. .0..1..0..1. .0..1..0..0. .0..0..1..0 ..0..0..1..1. .0..1..0..1. .1..0..0..0. .1..1..1..0. .0..0..1..1 ..0..1..1..0. .0..1..0..0. .1..1..1..1. .0..1..1..0. .0..0..0..1 ..0..0..0..1. .0..0..1..1. .1..1..0..1. .0..0..1..1. .0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..180
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 8*a(n-1) -4*a(n-2) -2*a(n-3) -36*a(n-4) -16*a(n-5)
k=4: [order 15]
k=5: [order 47]
Empirical for row n:
n=1: a(n) = 2*a(n-1)
n=2: a(n) = 4*a(n-1)
n=3: a(n) = 8*a(n-1) -40*a(n-3) +20*a(n-4) +8*a(n-5) -3*a(n-6) +32*a(n-7) for n>8
n=4: [order 15] for n>16
n=5: [order 68] for n>69
Comments