cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303553 Number of periodic factorizations of n > 1 into positive factors greater than 1; a(1) = 1 by convention.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2018

Keywords

Comments

A multiset is periodic if its multiplicities have a common divisor greater than 1.

Examples

			The a(64)  = 4 periodic factorizations are (2*2*2*2*2*2), (2*2*4*4), (4*4*4), (8*8).
The a(144) = 4 periodic factorizations are (2*2*2*2*3*3), (2*2*6*6), (3*3*4*4), (12*12).
The a(256) = 5 periodic factorizations are (2*2*2*2*2*2*2*2), (2*2*2*2*4*4), (2*2*8*8), (4*4*4*4), (16*16).
The a(576) = 7 periodic factorizations are (2*2*2*2*2*2*3*3), (2*2*2*2*6*6), (2*2*3*3*4*4), (2*2*12*12), (3*3*8*8), (4*4*6*6), (24*24).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],GCD@@Length/@Split[#]>1&]],{n,2,100}]
  • PARI
    gcd_of_multiplicities(lista) = { my(u=length(lista)); if(u<2, u, my(g=0, pe = lista[1], j=1); for(i=2,u,if(lista[i]==pe, j++, g = gcd(j,g); j=1; pe = lista[i])); gcd(g,j)); }; \\ the supplied lista (newfacs) should be monotonic
    A303553(n, m=n, facs=List([])) = if(1==n, (gcd_of_multiplicities(facs)!=1), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A303553(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Dec 06 2018

Formula

a(n) >= A303709(n). - Antti Karttunen, Dec 06 2018

Extensions

a(1) = 1 prepended by Antti Karttunen, Dec 06 2018