A303555 Triangle read by rows: T(n,k) = 2^(n-k)*prime(k)#, 1 <= k <= n, where prime(k)# is the product of first k primes.
2, 4, 6, 8, 12, 30, 16, 24, 60, 210, 32, 48, 120, 420, 2310, 64, 96, 240, 840, 4620, 30030, 128, 192, 480, 1680, 9240, 60060, 510510, 256, 384, 960, 3360, 18480, 120120, 1021020, 9699690, 512, 768, 1920, 6720, 36960, 240240, 2042040, 19399380, 223092870, 1024, 1536, 3840, 13440, 73920, 480480, 4084080, 38798760, 446185740, 6469693230
Offset: 1
Examples
T(5,4) = 420 = 2^2*3*5*7, hence 420 is the smallest number m such that bigomega(m) = 5 and omega(m) = 4 (see A189982). Triangle begins: 2; 4, 6; 8, 12, 30; 16, 24, 60, 210; 32, 48, 120, 420, 2310; 64, 96, 240, 840, 4620, 30030; 128, 192, 480, 1680, 9240, 60060, 510510; ...
Links
- Eric Weisstein's World of Mathematics, Prime Factor
- Eric Weisstein's World of Mathematics, Distinct Prime Factors
- Eric Weisstein's World of Mathematics, Primorial
- Index entries for sequences related to primorial numbers
- Index to sequences related to prime signature
Crossrefs
Programs
-
Mathematica
Flatten[Table[2^(n - k) Product[Prime[j], {j, k}], {n, 10}, {k, n}]]
Comments