cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303564 Number T(n,k) of derangements of [n] having exactly k peaks; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 6, 5, 33, 6, 11, 152, 102, 21, 663, 1068, 102, 43, 2778, 9060, 2952, 85, 11413, 68250, 50796, 2952, 171, 46332, 477978, 679368, 131112, 341, 186867, 3192192, 7824834, 3349224, 131112, 683, 750878, 20648088, 81751824, 64791576, 8271792
Offset: 0

Views

Author

Alois P. Heinz, Apr 26 2018

Keywords

Examples

			T(5,0) = 5: 51234, 53124, 53214, 54123, 54213.
T(5,1) = 33: 21453, 21534, 23451, 23514, 24513, 24531, 25134, 25413, 25431, 31254, 31452, 31524, 34512, 34521, 35124, 35214, 35412, 35421, 41253, 41523, 41532, 43152, 43251, 43512, 43521, 45123, 45213, 51423, 51432, 53412, 53421, 54132, 54231.
T(5,2) = 6: 23154, 24153, 34152, 34251, 45132, 45231.
Triangle T(n,k) begins:
    1;
    0;
    1;
    1,      1;
    3,      6;
    5,     33,        6;
   11,    152,      102;
   21,    663,     1068,      102;
   43,   2778,     9060,     2952;
   85,  11413,    68250,    50796,     2952;
  171,  46332,   477978,   679368,   131112;
  341, 186867,  3192192,  7824834,  3349224,  131112;
  683, 750878, 20648088, 81751824, 64791576, 8271792;
		

Crossrefs

Columns k=0-1 give: A001045(n-1) for n>0, A301272.
Row sums give A000166.
Cf. A008303 (the same for permutations), A004526, A129815, A129817, A162979, A162980, A216963, A303648 (the same for involutions).

Programs

  • Maple
    b:= proc(s, i, j) option remember; expand(`if`(s={}, 1, add(
          `if`(k=nops(s), 0, b(s minus {k}, `if`(j>k, 0, j), k)*
          `if`(i>0 and j>0 and ik, x, 1)), k=s)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, degree(p))))(b({$1..n}, 0$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[s_, i_, j_] := b[s, i, j] = Expand[If[s == {}, 1, Sum[If[k == Length[s], 0, b[s ~Complement~ {k}, If[j > k, 0, j], k]*If[i > 0 && j > 0 && i < j && j > k, x, 1]], {k, s}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Max[0, Exponent[p, x]]}]][b[Range[n], 0, 0]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 31 2018, from Maple *)

Formula

T(2*n+1,n) = A129815(2*n+1) = A129817(2*n+1) = A162979(2*n+1,0) = A162980(2*n+1,0).