cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303565 a(n) = [x^n] (Sum_{k=0..n} k!*x^k)/(Sum_{k=0..n} k!*(-x)^k).

Original entry on oeis.org

1, 2, 2, 10, 18, 202, 418, 8762, 18546, 648842, 1361090, 72858394, 150831762, 11533704106, 23631529186, 2447950210490, 4980921068466, 671176131216458, 1359534955872002, 230971485534437722, 466475222145987282, 97492025362288590058, 196500782158151756578
Offset: 0

Views

Author

Seiichi Manyama, Apr 26 2018

Keywords

Crossrefs

Cf. A303566.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=0, N, k!*x^k)/sum(k=0, N, k!*(-x)^k))

Formula

a(n) ~ 4*(n-1)! if n is even and a(n) ~ 2*n! if n is odd. - Vaclav Kotesovec, May 02 2018

A303567 a(n) = [x^n] ((Sum_{k=0..n} (k+1)!*x^k)/(Sum_{k=0..n} (k+1)!*(-x)^k))^(1/2).

Original entry on oeis.org

1, 2, 2, 16, 30, 492, 1052, 29632, 64582, 2842220, 6118860, 393285408, 831896748, 74023348728, 154261364376, 18199799667456, 37519687909062, 5669520927708492, 11601413537799692, 2184087758215537120, 4446590269784808388, 1020018234043912680104
Offset: 0

Views

Author

Seiichi Manyama, Apr 26 2018

Keywords

Crossrefs

Programs

  • PARI
    N=66; x='x+O('x^N); Vec((sum(k=0, N, (k+1)!*x^k)/sum(k=0, N, (k+1)!*(-x)^k))^(1/2))
Showing 1-2 of 2 results.