cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A303567 a(n) = [x^n] ((Sum_{k=0..n} (k+1)!*x^k)/(Sum_{k=0..n} (k+1)!*(-x)^k))^(1/2).

Original entry on oeis.org

1, 2, 2, 16, 30, 492, 1052, 29632, 64582, 2842220, 6118860, 393285408, 831896748, 74023348728, 154261364376, 18199799667456, 37519687909062, 5669520927708492, 11601413537799692, 2184087758215537120, 4446590269784808388, 1020018234043912680104
Offset: 0

Views

Author

Seiichi Manyama, Apr 26 2018

Keywords

Crossrefs

Programs

  • PARI
    N=66; x='x+O('x^N); Vec((sum(k=0, N, (k+1)!*x^k)/sum(k=0, N, (k+1)!*(-x)^k))^(1/2))

A303568 a(n) = [x^n] ((Sum_{k=0..n} (k+3)!*x^k)/(Sum_{k=0..n} (k+3)!*(-x)^k))^(1/4).

Original entry on oeis.org

1, 2, 2, 32, 62, 1764, 3916, 173376, 393446, 25166076, 56406348, 4958003840, 10882283500, 1264942740680, 2721161685880, 405344510959872, 857860989902854, 159511701001085164, 333452808033317004, 75711389658286217024, 156849644184430434436
Offset: 0

Views

Author

Seiichi Manyama, Apr 26 2018

Keywords

Crossrefs

Programs

  • PARI
    N=66; x='x+O('x^N); Vec((sum(k=0, N, (k+3)!*x^k)/sum(k=0, N, (k+3)!*(-x)^k))^(1/4))

A303614 a(n) = [x^n] (1/5040 * Sum_{k=0..n} (k+7)!*x^k)^(1/4).

Original entry on oeis.org

1, 2, 12, 100, 1016, 11904, 155896, 2237264, 34713216, 576780384, 10190672448, 190437245568, 3748465227360, 77458688700864, 1675826429735808, 37874833476394368, 892480151181131520, 21889831041022132224, 557997984025699216128
Offset: 0

Views

Author

Seiichi Manyama, Apr 27 2018

Keywords

Crossrefs

Programs

  • PARI
    N=66; x='x+O('x^N); Vec((1/7!*sum(k=0, N, (k+7)!*x^k))^(1/4))
Showing 1-3 of 3 results.