cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303638 Coefficients of a representation of gamma_{n-1}(1) - gamma_{n-1}(n) where gamma_n(x) are the generalized Euler-Stieltjes constants, triangle read by rows, for n >= 1 and 0 <= k <= n-1.

Original entry on oeis.org

1, 2, 0, 6, 0, 3, 24, 0, 12, 8, 120, 0, 540, 40, 0, 720, 0, 6120, 240, 0, 144, 5040, 0, 83160, 1680, 0, 1008, 840, 40320, 0, 1310400, 13440, 0, 8064, 6720, 5760, 362880, 0, 321012720, 120960, 0, 72576, 60480, 51840, 0, 3628800, 0, 9394509600, 207648000, 0, 725760, 604800, 518400, 0, 0
Offset: 1

Views

Author

Peter Luschny, Apr 27 2018

Keywords

Examples

			The triangle starts:
[n\k][      0  1           2          3  4       5       6       7  8  9]
[ 1] [      1]
[ 2] [      2, 0]
[ 3] [      6, 0,          3]
[ 4] [     24, 0,         12,         8]
[ 5] [    120, 0,        540,        40, 0]
[ 6] [    720, 0,       6120,       240, 0,    144]
[ 7] [   5040, 0,      83160,      1680, 0,   1008,    840]
[ 8] [  40320, 0,    1310400,     13440, 0,   8064,   6720,   5760]
[ 9] [ 362880, 0,  321012720,    120960, 0,  72576,  60480,  51840, 0]
[10] [3628800, 0, 9394509600, 207648000, 0, 725760, 604800, 518400, 0, 0]
		

Crossrefs

See the cross-references in A301816 for the values of some Stieltjes constants.
Row sums are A303938.

Programs

  • Maple
    Trow := proc(n) local h, r, e, f;
    h := (n, k) -> `if`(k = 1, x[0], h(n, k-1) - log(k-1)^n/(k-1));
    r := `if`(n = 0, 1, n!*h(n-1,n)); f := k -> (-x[k])^(1/(n-1));
    e := eval(subs(ln = f, r)); seq(coeff(e, x[i]), i=0..n-1) end:
    seq(Trow(n), n=1..10);
    # Alternative:
    T := proc(n, k) local ispp, omega:
      omega := n -> nops(numtheory:-factorset(n)):
      ispp  := n -> not isprime(n) and omega(n) = 1:
      if k = 0 then return n! fi;
      if isprime(k) then
         add(v^(n-1)*k^(-v), v=1..ilog[k](n-1)):
         return n!*% fi:
      if k = 1 or ispp(k) then return 0 fi:
      return n!/k end:
    seq(seq(T(n,k), k=(0..n-1)), n=1..10);
  • Mathematica
    T[n_, k_] := Module[{s}, If[k == 0, Return[n!]]; If[PrimeQ[k], s = Sum[v^(n-1) k^(-v), {v, 1, Log[k, n-1]}]; Return[n! s]]; If[k == 1 || PrimePowerQ[k], Return[0]]; n!/k];
    Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 22 2019, from 2nd Maple program *)

Formula

gamma_{n-1}(1) - gamma_{n-1}(n) = (1/n!) Sum_{k=1..n-1} T(n,k)*(log(k))^(n-1) where T(n, k) = 0 if k is a prime power (in the sense of A025475).
-Gamma(n)*B^(n)(0,n) = n!*gamma_{n-1} - Sum_{k=1..n-1} T(n,k)(log(k))^(n-1) where Gamma(n) is Euler's Gamma function and B^(n)(0,n) is the n-th derivative of the generalized Bernoulli function B(s, a) with respect to s.
Four cases can be distinguished:
(1) If k=0 then T(n, k) = n!,
(2) else if k is prime then T(n, k) = Sum_{v=1..m} v^(n-1)*k^(-v) where m = ilog_k(n-1) and ilog is the integer base k logarithm,
(3) else if k is a prime power in the sense of A025475 then T(n, k) = 0,
(4) else (k is composite but not a prime power) T(n, k) = n!/k.