cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303655 Bit column sums in the binary expansions of Fibonacci(n)/2^n for n >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 7, 12, 9, 10, 9, 14, 13, 18, 21, 17, 23, 16, 20, 24, 23, 23, 26, 26, 30, 29, 29, 32, 34, 32, 37, 34, 33, 43, 30, 37, 41, 46, 43, 44, 42, 52, 45, 51, 50, 53, 50, 51, 49, 55, 64, 48, 60, 53, 65, 73, 67, 58, 69, 62, 75, 65, 74, 71, 69, 68, 88, 89, 85, 67, 76, 82, 83, 76, 81, 89, 91, 98, 93, 92, 83, 104, 87, 95, 90, 85, 101, 91, 101, 105, 105, 114, 84, 104, 108, 116, 121, 104, 126, 104, 110, 131, 107, 111, 137, 109, 126, 124, 119, 127, 136, 127, 120, 122, 145, 132, 132, 127, 131, 122, 129, 130, 136, 144, 146
Offset: 1

Views

Author

Paul D. Hanna, Apr 27 2018

Keywords

Examples

			The binary expansions of Fibonacci(n)/2^n for n >= 1 begin:
.1
.01
.010
.0011
.00101
.001000
.0001101
.00010101
.000100010
.0000110111
.00001011001
.000010010000
.0000011101001
.00000101111001
.000001001100010
.0000001111011011
.00000011000111101
.000000101000011000
.0000001000001010101
.00000001101001101101
.000000010101011000010
.0000000100010100101111
.00000000110111111110001
.000000001011010100100000
.0000000010010010100010001
.00000000011101101000110001
.000000000101111111101000010
.0000000001001101100101110011
.00000000001111101100010110101
.000000000011001011001000101000
.0000000000101001000101011011101
.00000000001000010011110100000101
.000000000001101011100011111100010
.0000000000010101110000010011100111
.00000000000100011001100110011001001
.000000000000111000111101000110110000
.0000000000001011100001001111001111001
.00000000000010010101000111000000101001
.000000000000011110001010000111010100010
.0000000000000110000110010111111011001011
.00000000000001001110111101000110101101101
.000000000000001111111110000000110000111000
.0000000000000011001110101101001100110100101
.00000000000000101001110011101010010111011101
.000000000000001000011101001010011111110000010
.0000000000000001101101011100111110010101011111
.00000000000000010110001000110010010010011100001
.000000000000000100011110100011010000101001000000
.0000000000000000111001111101001100010111100100001
.00000000000000001011101110001100110011100101100001
...
the column sums of which form this sequence.
Thus, a(n) equals the number of 1-bits in column n in the binary expansions of Fibonacci(n)/2^n for n >= 1.
		

Crossrefs

Formula

Sum_{n>=1} a(n) / 2^n = 2.